from skimage import io
import scipy.io
import os
import argparse
import numpy as np
import torch
import warnings
import matplotlib.pyplot as plt
from pathlib import Path
import matplotlib
import torch.nn as nn
import torch.optim as optim
import datetime
import time
def str2bool(v):
if isinstance(v, bool):
return v
if str(v).lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif str(v).lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
#project_root - root directory
#data_dir - test mosaic images directory
#stitched_output_dir - predicted vesselness mosaic image
config = dict()
config["project_root"] = os.getenv('PROJECT_ROOT', 'Q:\\data')
config["data_dir"] = os.getenv('DATA_DIR', 'MB')
config["debug"] = str2bool(os.getenv('DEBUG', True)) # If True, will set device logging and other useful debug outputs.
config["model_dir"] = os.getenv('MODEL_DIR', 'MB\\models')
config["model_file"] = os.getenv("MODEL_FILE", "vggnet_")
parser = argparse.ArgumentParser(description='Splitting mosaic images, predicting split images and stitching them')
for key, value in config.items():
t = type(value)
if t is list or t is tuple:
parser.add_argument('--' + key, nargs='+',
default=value, type=type(value[0]),
help="path to training images")
elif t is bool:
parser.add_argument('--' + key, type=str2bool, nargs='?',
const=True, default=value,
help="Activate nice mode.")
else:
parser.add_argument('--' + key,
default=value, type=t,
help="path to training images")
options = parser.parse_args()
cfg = {
'VGG11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'VGG13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'VGG16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
'VGG19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}
class VGG(nn.Module):
def __init__(self, vgg_name):
super(VGG, self).__init__()
self.features = self._make_layers(cfg[vgg_name])
self.classifier = nn.Linear(512, 1)
#self.last=nn.Sigmoid()
def forward(self, x):
print(x.size())
out = self.features(x)
out = self.classifier(out)
return out
def _make_layers(self, cfg):
layers = []
in_channels = 1
for x in cfg:
if x == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1),
nn.BatchNorm2d(x),
nn.ReLU(inplace=True)]
in_channels = x
return nn.Sequential(*layers)
model = VGG('VGG19')
if __name__ == '__main__':
if torch.cuda.is_available() and not options.debug:
device_type = 'cuda'
else:
device_type = 'cpu'
device = torch.device(device_type)
image_dir = os.path.join(
options.project_root, options.data_dir, 'CNN_vessel_width/patches/')
image_list = [Path(f).stem for f in os.listdir(image_dir)
if os.path.isfile(os.path.join(image_dir, f))]
num_imgs = len(image_list)
print ('number of images', num_imgs)
label_dir = os.path.join(
options.project_root, options.data_dir, 'CNN_vessel_width/labels/')
label_list = [Path(f).stem for f in os.listdir(label_dir)
if os.path.isfile(os.path.join(label_dir, f))]
num_labels = len(label_list)
print ('number of labels', num_labels)
model_path = os.path.join(
options.project_root, options.model_dir, options.model_file)
criterion = nn.MSELoss()
optimizer=torch.optim.Adam(model.parameters(),lr=0.001)
since=time.time()
for epoch in range(5): # loop over the dataset multiple times
running_loss = 0.0
epoch_loss=0.0
for patch_name in image_list:
image_name = image_dir + patch_name + '.png'
patch= io.imread(image_name).astype('float32')
patch = torch.from_numpy(
np.expand_dims(np.expand_dims((patch-185)/38.7, axis=0),axis=0)).float()
objText=open(label_dir + patch_name + '.txt', "r")
label = objText.read()
optimizer.zero_grad()
# forward + backward + optimize
outputs = model(patch)
print('output size is:', outputs.size())
loss = criterion(outputs, label)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 128 == 127: # print every 2000 mini-batches
epoch_loss=running_loss/128
print('[%d, %5d] loss: %.3f epoch_loss:%.3f' %
(epoch + 1, i + 1, running_loss / 128,epoch_loss))
running_loss = 0.0
time_elapsed=time.time()-since
print('Finished Training in {:.0f}m {:.0f}s' .format(time_elapsed//60, time_elapsed %60))
model_name = model_path + datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
torch.save(model.state_dict(), model_name + '_final.pth')
model.load_state_dict(best_model_wts)
torch.save(model.state_dict(), model_name + '_opt.pth')
After changing the self.classifier =nn.Linear(512,1) and using MSE Loss I am getting size mismatch error:
Traceback (most recent call last):
File “CNN_data.py”, line 157, in
outputs = model(patch)
File “/opt/apps/apps/binapps/pytorch/1.0.1/python3.6/gpu/lib/python3.6/site-packages/torch/nn/modules/module.py”, line 489, in call
result = self.forward(*input, **kwargs)
File “CNN_data.py”, line 78, in forward
out = self.classifier(out)
File “/opt/apps/apps/binapps/pytorch/1.0.1/python3.6/gpu/lib/python3.6/site-packages/torch/nn/modules/module.py”, line 489, in call
result = self.forward(*input, **kwargs)
File “/opt/apps/apps/binapps/pytorch/1.0.1/python3.6/gpu/lib/python3.6/site-packages/torch/nn/modules/linear.py”, line 67, in forward
return F.linear(input, self.weight, self.bias)
File “/opt/apps/apps/binapps/pytorch/1.0.1/python3.6/gpu/lib/python3.6/site-packages/torch/nn/functional.py”, line 1354, in linear
output = input.matmul(weight.t())
RuntimeError: size mismatch, m1: [4096 x 8], m2: [512 x 1] at /pytorch/aten/src/TH/generic/THTensorMath.cpp:940