I need to save all the neuron values in each layer after the activation and gradient with respect to. I am very new to this and i know that i need to use hooks. Can someone please hint me how to do this for following network? Thanks.

class LeNet_5(nn.Module):

```
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 6, 5, padding=2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc3 = nn.Linear(16 * 5 * 5, 120)
self.fc4 = nn.Linear(120, 84)
self.fc5 = nn.Linear(84, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2)
x = F.relu(self.fc3(x.view(-1, 16 * 5 * 5)))
x = F.relu(self.fc4(x))
x = F.log_softmax(self.fc5(x))
return x
```