class_correct = list(0. for i in range(3))
class_total = list(0. for i in range(3))
with torch.no_grad():
for data in testloader:
images, labels = data
images = Variable(images)
labels = Variable(labels)
outputs = model(images)
_, predicted = torch.max(outputs, 1)
c = (predicted == labels).squeeze()
for i in range(10):
label = labels[i]
class_correct[label] += c[i].item()
class_total[label] += 1
#print('Accuracy of %5s : %2f %%' % (classes[i], 100 * class_correct[i] / class_total[i]))
# =============================================================================
# for i in range(10):
# print('Accuracy of %5s : %2f %%' % (
# classes[i], 100 * class_correct[i] / class_total[i]))
check the batch size of testdata loader?
testloader = torch.utils.data.DataLoader(dataset=testset,
batch_size=4,
shuffle=False)
in case you set it in batch_size=1