I am still new to PyTorch and I am going off this link: https://pytorch.org/docs/stable/optim.html I don’t see many examples of it being applied online so this is how I thought it should look.
Q = math.floor(len(train_data)/batch)
lrs = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max = Q)
Then in my training loop, I have it set up like so:
# Update parameters
optimizer.zero_grad()
loss.backward()
optimizer.step()
lrs.step()
For the training loop, I even tried a different approach such as:
# Update parameters
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Print interim results
if b%10 == 0:
print(f'epoch: {epoch:2} batch: {b:4} loss: {loss.item():10.8f} \
accuracy: {accuracy:3.3f}%')
if b%214 == 0:
train_acc.append(accuracy)
train_losses.append(loss)
train_correct.append(trn_corr)
mean_loss = sum(train_losses)/len(train_losses)
for param_group in optimizer.param_groups:
lr_track.append(param_group['lr'])
print("\n")
lrs.step(mean_loss)
Where after every epoch it gets adjusted.