Huge False Negatives

Hi @ptrblck,

below are the weights i tested and there is no deviation in confusion matrix and one more observation is as weight value is increasing difference between validation loss and training loss is increasing. so is that i need to test for lower weights ? and what is the weight difference i should keep in for loop ? (value of 10 ?)

[[2.5],[2.55],[2.6],[2.65],[2.7],[2.75],[2.8],[2.85],[2.9],[2.95],[3],[3.05],[3.1],[3.15],[3.2],[3.25],[3.3],[3.35],[3.4],[3.45],[3.5],[3.55],[3.6],[3.65],[3.7],[3.75],[3.8],[3.85],[3.9],[3.94999999999999],[3.99999999999999],[4.04999999999999],[4.09999999999999],[4.14999999999999],[4.19999999999999],[4.24999999999999],[4.29999999999999],[4.34999999999999],[4.39999999999999],[4.44999999999999],[4.49999999999999],[4.54999999999999],[4.59999999999999],[4.64999999999999],[4.69999999999999],[4.74999999999999],[4.79999999999999],[4.84999999999999],[4.89999999999999],[4.94999999999999],[4.99999999999999],[5.04999999999999],[5.09999999999999],[5.14999999999999],[5.19999999999999],[5.24999999999999],[5.29999999999999],[5.34999999999999],[5.39999999999999],[5.44999999999999],[5.49999999999999],[5.54999999999999],[5.59999999999999],[5.64999999999999],[5.69999999999999],[5.74999999999999],[5.79999999999999],[5.84999999999999],[5.89999999999999],[5.94999999999999],[5.99999999999999],[6.04999999999999],[6.09999999999999],[6.14999999999999],[6.19999999999999],[6.24999999999999],[6.29999999999999],[6.34999999999999],[6.39999999999999],[6.44999999999999],[6.49999999999999],[6.54999999999999],[6.59999999999999],[6.64999999999999],[6.69999999999999],[6.74999999999998],[6.79999999999998],[6.84999999999998],[6.89999999999998],[6.94999999999998],[6.99999999999998],[7.04999999999998],[7.09999999999998],[7.14999999999998],[7.19999999999998],[7.24999999999998],[7.29999999999998],[7.34999999999998],[7.39999999999998],[7.44999999999998],[7.49999999999998],[7.54999999999998],[7.59999999999998],[7.64999999999998],[7.69999999999998],[7.74999999999998],[7.79999999999998],[7.84999999999998],[7.89999999999998],[7.94999999999998],[7.99999999999998],[8.04999999999998],[8.09999999999998],[8.14999999999998],[8.19999999999998],[8.24999999999998],[8.29999999999998],[8.34999999999998],[8.39999999999998],[8.44999999999998],[8.49999999999998],[8.54999999999998],[8.59999999999998],[8.64999999999998],[8.69999999999998],[8.74999999999998],[8.79999999999998],[8.84999999999998],[8.89999999999998],[8.94999999999998],[8.99999999999998],[9.04999999999998],[9.09999999999998],[9.14999999999998],[9.19999999999998],[9.24999999999998],[9.29999999999998],[9.34999999999998],[9.39999999999998],[9.44999999999998],[9.49999999999998],[9.54999999999997],[9.59999999999997],[9.64999999999997],[9.69999999999997],[9.74999999999997],[9.79999999999997],[9.84999999999997],[9.89999999999997],[9.94999999999997],[9.99999999999997],[10.05],[10.1],[10.15],[10.2],[10.25],[10.3],[10.35],[10.4],[10.45],[10.5],[10.55],[10.6],[10.65],[10.7],[10.75],[10.8],[10.85],[10.9],[10.95],[11],[11.05],[11.1],[11.15],[11.2],[11.25],[11.3],[11.35],[11.4],[11.45],[11.5],[11.55],[11.6],[11.65],[11.7],[11.75],[11.8],[11.85],[11.9],[11.95],[12],[12.05],[12.1],[12.15]
]