I need HELP. Python tells me that torch cuda uses the GPU, but my GPU is 0% used!

I just did a new test and in fact my cuda/gpu works as shown on the picture:

But I don’t know why my code here is very very slow, when you run it you can see that it shows me that my learning loop is at about 7it/s with GPU and 3-4it/s with CPU, but two days ago with the same code I was reaching 35it/s, I tested on a friend’s computer (with a very similar graphics card) and it also has 35s/it. I checked my NVIDIA Cuda driver and my version of cuda toolkit, and they have no problem, but I don’t know why in my code here “that only on my computer” it is slow.

Here is my code:

If you want the data also to test everything is here, (note I am not the person who wrote this code, it is my teacher) :
https://filesender.renater.fr/?s=download&token=517e4ce7-3316-4774-b622-4ee49e85ff39

import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import optim
# from torch.autograd import Variable
import torchvision.transforms as transforms
import torchvision.datasets as dset
import torchvision.utils as vutils
from PIL import ImageFile
# import os

from tqdm import tqdm

learning_rate = 0.01
momentum = 0.5
batch_size_train = 40
batch_size_test = 500

# Dataloader class and function

ImageFile.LOAD_TRUNCATED_IMAGES = True


class Data:
    def __init__(self, dataset_train, dataset_train_original, dataloader_train,
                 dataset_test, dataset_test_original, dataloader_test,
                 batch_size_train, batch_size_test):
        self.train = dataset_train
        self.train_original = dataset_train_original
        self.loader_train = dataloader_train
        self.num_train_samples = len(dataset_train)
        self.test = dataset_test
        self.test_original = dataset_test_original
        self.loader_test = dataloader_test
        self.num_test_samples = len(dataset_test)
        self.batch_size_train = batch_size_train
        self.batch_size_test = batch_size_test


def loadImgs(des_dir="./data/", img_size=100, batch_size_train=40, batch_size_test=100):

    dataset_train = dset.ImageFolder(root=des_dir + "train/",
                               transform=transforms.Compose([
                                   transforms.Resize(img_size),
                                   transforms.RandomCrop(75, padding=4),
                                   transforms.RandomHorizontalFlip(),
                                   transforms.ToTensor(),
                                   transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
                               ]))

    dataset_train_original = dset.ImageFolder(root=des_dir + "train/",
                               transform=transforms.Compose([
                                   transforms.Resize(img_size),
                                   transforms.ToTensor(),
                               ]))

    dataset_test = dset.ImageFolder(root=des_dir + "test/",
                               transform=transforms.Compose([
                                   transforms.Resize(img_size),
                                   transforms.RandomCrop(75, padding=4),
                                   transforms.RandomHorizontalFlip(),
                                   transforms.ToTensor(),
                                   transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
                               ]))

    dataset_test_original = dset.ImageFolder(root=des_dir + "test/",
                               transform=transforms.Compose([
                                   transforms.Resize(img_size),
                                   transforms.ToTensor(),
                               ]))

    dataloader_train = torch.utils.data.DataLoader(dataset_train, batch_size=batch_size_train, shuffle=True)

    dataloader_test = torch.utils.data.DataLoader(dataset_test, batch_size=batch_size_test, shuffle=True)

    data = Data(dataset_train, dataset_train_original, dataloader_train,
                dataset_test, dataset_test_original, dataloader_test,
                batch_size_train, batch_size_test)
    return data

# evaluation on a batch of test data:
def evaluate(model, data):
    batch_enum = enumerate(data.loader_test)
    batch_idx, (testdata, testtargets) = next(batch_enum)
    testdata = testdata.to(device)
    testtargets = testtargets.to(device)
    model = model.eval()
    oupt = torch.argmax(model(testdata), dim=1)
    t = torch.sum(oupt == testtargets)
    result = t * 100.0 / len(testtargets)
    model = model.train()
    print(f"{t} correct on {len(testtargets)} ({result.item()} %)")
    return result.item()

# iteratively train on batches for one epoch:
def train_epoch(model, optimizer, data):
    batch_enum = enumerate(data.loader_train)
    i_count = 0
    iterations = data.num_train_samples // data.batch_size_train
    for batch_idx, (dt, targets) in tqdm(batch_enum):
        i_count = i_count+1
        outputs = model(dt.to(device))
        loss = F.cross_entropy(outputs, targets.to(device))
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if i_count == iterations:
            break

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 32, 3, 1)
        self.conv2 = nn.Conv2d(32, 64, 3, 1)
        self.dropout1 = nn.Dropout2d(0.25)
        self.dropout2 = nn.Dropout2d(0.25)
        self.dropout3 = nn.Dropout2d(0.5)
        self.fc1 = nn.Linear(((((75-2)//2-2)//2)**2)*64, 256)
        self.fc2 = nn.Linear(256, 128)
        self.fc3 = nn.Linear(128, 2)

    def forward(self, x):
        x = F.relu(self.conv1(x.view(-1, 3, 75, 75)))
        x = self.dropout1(F.max_pool2d(x, 2))
        x = F.relu(self.conv2(x))
        x = self.dropout2(F.max_pool2d(x, 2))
        x = torch.flatten(x, 1)
        x = self.dropout3(F.relu(self.fc1(x)))
        x = self.fc2(x)
        x = self.fc3(x)
        return x

data = loadImgs(batch_size_train=batch_size_train, batch_size_test=batch_size_test)

net = Net().to(device)
optimizer = torch.optim.SGD(net.parameters(), lr=learning_rate, momentum=momentum)

# net.load_state_dict(torch.load('./data/model_TP.pt'))
# evaluate(net, data)

num_epochs = 1
for j in range(num_epochs):
    print(f"epoch {j} / {num_epochs}")
    train_epoch(net, optimizer, data)
    evaluate(net, data)
    torch.save(net.state_dict(), './data/model_TP.pt')