If input.dim() == 2 and bias is not None: AttributeError: 'tuple' object has no attribute 'dim

‘’’
import torch
import torch.nn as nn
import logging
import numpy as np
from models.dropout import DropoutWrapper
from utils.data_utils import ModelType, NLP_MODELS, TaskType, LOSSES
from transformers import AdamW, get_linear_schedule_with_warmup
logger = logging.getLogger(“multi_task”)

class multiTaskNetwork(nn.Module):
def init(self, params):
super(multiTaskNetwork, self).init()
self.params = params
self.taskParams = self.params[‘task_params’]
assert self.taskParams.modelType in ModelType.value2member_map, “Model Type is recognized, check in data_utils”
self.modelType = self.taskParams.modelType

    # making shared base encoder model
    # Initializing with a config file does not load the weights associated with the model,
    # only the configuration. Check out the from_pretrained() method to load the model weights.
    #modelName = ModelType(self.modelType).name.lower()
    modelName = self.modelType.name.lower()
    configClass, modelClass, tokenizerClass, defaultName = NLP_MODELS[modelName]
    if self.taskParams.modelConfig is not None:
        logger.info('Making shared model from given config name {}'.format(self.taskParams.modelConfig))
        self.sharedModel = modelClass.from_pretrained(self.taskParams.modelConfig)
    else:
        logger.info("Making shared model with default config")
        self.sharedModel = modelClass.from_pretrained(defaultName)
    self.hiddenSize = self.sharedModel.config.hidden_size
    
    #making headers
    self.allDropouts, self.allHeaders = self.make_multitask_heads()
    #making pooler layer. Will be used as required
    self.poolerLayer = self.make_pooler_layer()
    self.initialize_headers()

def make_multitask_heads(self):
    
    #Function to make task specific headers for all tasks.
    hiddenSize :- Size of the encoder hidden state output from shared model. Hidden state will be 
    used as input to headers. Hence size is required to make input layer for header.

    The final layer output size depends on the number of classes expected in the output
    
    allHeaders = nn.ModuleDict()
    allDropouts = nn.ModuleDict()

    # taskIdNameMap is orderedDict, it will preserve the order of tasks
    for taskId, taskName in self.taskParams.taskIdNameMap.items():
        taskType = self.taskParams.taskTypeMap[taskName]
        numClasses = int(self.taskParams.classNumMap[taskName])
        dropoutValue = self.taskParams.dropoutProbMap[taskName]
        dropoutLayer = DropoutWrapper(dropoutValue)
        outLayer = nn.Linear(self.hiddenSize, numClasses)
        allDropouts[taskName] = dropoutLayer
        allHeaders[taskName] = outLayer
        

    return allDropouts, allHeaders

def initialize_headers(self):
    def init_weights(module):
        if isinstance(module, (nn.Linear, nn.Embedding)):
            module.weight.data.normal_(mean=0.0, std=0.02 * 1.0)
        if isinstance(module, nn.Linear):
            if module.bias is not None:
                module.bias.data.zero_()

    self.apply(init_weights)

def make_pooler_layer(self):
    

    poolerLayer = nn.Linear(self.hiddenSize, self.hiddenSize)
    return poolerLayer

def forward(self, tokenIds, typeIds, attentionMasks, taskId, taskName):

    # taking out output from shared encoder. 
    if typeIds is not None and attentionMasks is not None:
        outputs = self.sharedModel(input_ids = tokenIds,
                                token_type_ids = typeIds,
                                attention_mask = attentionMasks)
    elif typeIds is None and attentionMasks is not None:
        outputs = self.sharedModel(input_ids = tokenIds,
                                attention_mask = attentionMasks)
    elif typeIds is not None and attentionMasks is None:
        outputs = self.sharedModel(input_ids = tokenIds,
                                token_type_ids = typeIds)
    elif typeIds is None and attentionMasks is None:
        outputs = self.sharedModel(input_ids = tokenIds)
    
    # some of the encoder model doesnt output the pooler output. It has to be made from hidden state
    #ouputs in those cases
    # SequenceOutput has shape : (batchSize, maxSeqLen, hiddenSize))
    sequenceOutput = outputs[0]
    if len(outputs) > 1:
        pooledOutput = outputs[1]
    else:
        pooledOutput = nn.ReLU()(self.poolerLayer(sequenceOutput[:, 0]))

    #pooledOutput = outputs[1] if len(outputs) >1 else self.make_pooler_output(sequenceOutput)

    taskType = self.taskParams.taskTypeMap[self.taskParams.taskIdNameMap[taskId]]

    if taskType == TaskType.NER:
        sequenceOutput = self.allDropouts[taskName](sequenceOutput)
        #task specific header. In NER case, sequence output is 3-D, also has maxSeqLen.
        # but the pytorch liner layer now can hangle this as long as the last dimension is the given dimensions
        logits = self.allHeaders[taskName](sequenceOutput)
        return logits
        
    else:
        #adding dropout layer after shared output
        pooledOutput = self.allDropouts[taskName](pooledOutput)
        #adding task specific header
        logits = self.allHeaders[taskName](pooledOutput)
        return logits

class multiTaskModel:

This is the model helper class which is responsible for building the 
model architecture and training. It has following functions
1. Make the multi-task network
2. set optimizer with linear scheduler and warmup
3. Multi-gpu support
4. Task specific loss functionbat
5. Model update for training
6. Predict function for inference

def __init__(self, params):
    self.params = params
    self.taskParams = self.params['task_params']

    self.globalStep = 0
    self.accumulatedStep = 0

    # making model
    if torch.cuda.device_count() > 1:
        logger.info("Using number of gpus: {}".format(torch.cuda.device_count()))
        self.network = nn.DataParallel(multiTaskNetwork(params))
    else:
        self.network = multiTaskNetwork(params)
        logger.info('Using single GPU')

    # transfering to gpu if available
    if self.params['gpu']:
        self.network.cuda()

    #print(self.network.state_dict().keys())
    #optimizer and scheduler
    self.optimizer, self.scheduler = self.make_optimizer(numTrainSteps=self.params['num_train_steps'],
                                                        warmupSteps=self.params['warmup_steps'],
                                                        lr = self.params["learning_rate"],
                                                        eps = self.params["epsilon"])
    #loss class list
    self.lossClassList = self.make_loss_list()


def make_optimizer(self, numTrainSteps, lr, eps, warmupSteps=0):
    # we will use AdamW optimizer from huggingface transformers. This optimizer is 
    #widely used with BERT. It is modified form of Adam which is used in Tensorflow 
    #implementations        
    optimizer = AdamW(self.network.parameters(), lr=lr, eps = eps)

    # lr scheduler
    scheduler = get_linear_schedule_with_warmup(optimizer,
                                                num_warmup_steps=warmupSteps,
                                                num_training_steps=numTrainSteps)
    logger.debug("optimizer and scheduler created")
    return optimizer, scheduler

def make_loss_list(self):
    # making loss class list according to task id
    lossClassList = []
    for taskId, taskName in self.taskParams.taskIdNameMap.items():
        lossName = self.taskParams.lossMap[taskName].name.lower()
        lossClass = LOSSES[lossName](alpha=self.taskParams.lossWeightMap[taskName])
        lossClassList.append(lossClass)
    return lossClassList

def _to_cuda(self, tensor):
    if tensor is None: return tensor

    if isinstance(tensor, list) or isinstance(tensor, tuple):
        y = [e.cuda(non_blocking=True) for e in tensor]
        for e in y:
            e.requires_grad = False
    else:
        y = tensor.cuda(non_blocking=True)
        y.requires_grad = False
    return y 

def update_step(self, batchMetaData, batchData):
    #changing to train mode
    self.network.train()
    target = batchData[batchMetaData['label_pos']]

    #transfering label to gpu if present
    if self.params['gpu']:
        target = self._to_cuda(target)

    taskId = batchMetaData['task_id']
    taskName = self.taskParams.taskIdNameMap[taskId]
    logger.debug('task id for batch {}'.format(taskId))
    #making forward pass
    #batchData: [tokenIdsBatchTensor, typeIdsBatchTensor, masksBatchTensor, labelsTensor]
    # batchData would have typeIdsBatchTensor or masksBatchTensor as None if the model doesn't support it
    #model forward function input [tokenIdsBatchTensor, typeIdsBatchTensor, masksBatchTensor, taskId]
    # we are not going to send labels in batch
    logger.debug('len of batch data {}'.format(len(batchData)))
    logger.debug('label position in batch data {}'.format(batchMetaData['label_pos']))

    modelInputs = batchData[:batchMetaData['label_pos']]
    modelInputs += [taskId]
    modelInputs += [taskName]

    logger.debug('size of model inputs {}'.format(len(modelInputs)))
    logits = self.network(*modelInputs)
    #calculating task loss
    self.taskLoss = 0
    logger.debug('size of model output logits {}'.format(logits.size()))
    logger.debug('size of target {}'.format(target.size()))
    if self.lossClassList[taskId] and (target is not None):
        self.taskLoss = self.lossClassList[taskId](logits, target, attnMasks=modelInputs[2])
        #tensorboard details
        self.tbTaskId = taskId
        self.tbTaskLoss = self.taskLoss.item()
    taskLoss = self.taskLoss / self.params['grad_accumulation_steps']
    taskLoss.backward()
    self.accumulatedStep += 1

    #gradients will be updated only when accumulated steps become
    #mentioned number in grad_acc_steps (one global update)
    if self.accumulatedStep == self.params['grad_accumulation_steps']:
        logging.debug('model updated.')
        if self.params['grad_clip_value'] > 0:
            torch.nn.utils.clip_grad_norm_(self.network.parameters(),
                                            self.params['grad_clip_value'])

        self.optimizer.step()
        self.scheduler.step()

        self.optimizer.zero_grad()
        self.globalStep += 1
        #resetting accumulated steps
        self.accumulatedStep = 0

def predict_step(self, batchMetaData, batchData):
    
    Function for predicting on a batch from model. Will be used for inference and dev/test set.
    The labels in case of eval (predictions) are kept in batchMetaData and are not Tensors
    
    self.network.eval()
    taskId = batchMetaData['task_id']
    taskName = self.taskParams.taskIdNameMap[taskId]
    taskType = batchMetaData['task_type']
    modelInputs = batchData + [taskId] + [taskName]
    logger.debug("Pred model input length: {}".format(len(modelInputs)))

    #making forward pass to get logits
    outLogits = self.network(*modelInputs)
    logger.debug("Pred model logits shape: {}".format(outLogits.size()))
    #process logits as per task type
    if taskType in (TaskType.SingleSenClassification, TaskType.SentencePairClassification):
        outLogitsSoftmax = nn.functional.softmax(outLogits, dim = 1).data.cpu().numpy()
        outLogitsSigmoid = nn.functional.sigmoid(outLogits).data.cpu().numpy()
        predictedClass = np.argmax(outLogitsSoftmax, axis = 1)

        logger.debug("Final Predictions shape after argmx: {}".format(predictedClass.shape))
        predictedClass = predictedClass.tolist()
        return predictedClass, outLogitsSigmoid

    if taskType == TaskType.NER:
        outLogitsSoftmax = nn.functional.softmax(outLogits, dim = 2).data.cpu().numpy()
        ouLogitsSigmoid = nn.functional.sigmoid(outLogits).data.cpu().numpy()
        #shape of outlogits now (batchSize, maxSeqLen, classNum)
        
        predicted = np.argmax(outLogitsSoftmax, axis = 2)
        # here in score, we only want to give out the score of the class of tag 
        #which is maximum
        predScore = np.max(ouLogitsSigmoid, axis = 2).tolist()
        
        #shape of predicted now (batchSize, maxSeqLen)
        logger.debug("Final Predictions shape after argmx: {}".format(predicted.shape))
        predicted = predicted.tolist()
        # get the attention masks, we need to discard the predictions made for extra padding
        attnMasksBatch = batchData[2]
        predictedTags = []
        predScoreTags = []
        if attnMasksBatch is not None:
            #shape of attention Masks (batchSize, maxSeqLen)
            actualLengths = attnMasksBatch.cpu().numpy().sum(axis = 1).tolist()
            for i, (pred, sc) in enumerate(zip(predicted, predScore)):
                predictedTags.append( pred[:actualLengths[i]] )
                predScoreTags.append( sc[:actualLengths[i]])
            
            return predictedTags, predScoreTags
        else:
            return predicted, predScore
    else:
        raise ValueError("Task type for prediction batch not known {}".format(taskType))


def save_multi_task_model(self, savePath):
 
    We will save the model parameters with state dict.
    Also the current optimizer state.
    Along with the current global_steps and epoch which would help
    for resuming training
    Plus we will save the task parameters object created from the task file.
    The same object shall be used for this saved model

    modelStateDict = {k : v.cpu() for k,v in self.network.state_dict().items()}
    toSave = {'model_state_dict' :modelStateDict,
            'optimizer_state' : self.optimizer.state_dict(),
            'scheduler_state' : self.scheduler.state_dict(),
            'global_step' : self.globalStep,
            'task_params' : self.taskParams}
    torch.save(toSave, savePath)
    logger.info('model saved in {} global step at {}'.format(self.globalStep, savePath))

def load_multi_task_model(self, loadedDict):

  
    Need to check state dict for multi-gpu and single-gpu compatibility
 
    # anyway stripping module from front (if present/not present)
    loadedDict['model_state_dict'] = {k.lstrip('module.'):v for k, v in loadedDict['model_state_dict'].items()}
    if torch.cuda.device_count() > 1:
        #current network requires 'module'
        loadedDict['model_state_dict'] = {'module.'+k : v for k, v in loadedDict['model_state_dict'].items()}

    self.network.load_state_dict(loadedDict['model_state_dict'])
    #print(self.network.state_dict().keys())
    self.optimizer.load_state_dict(loadedDict['optimizer_state'])
    self.scheduler.load_state_dict(loadedDict['scheduler_state'])
    self.globalStep = loadedDict['global_step']

def load_shared_model(self, loadedDict, freeze):

    loadedDict['model_state_dict'] = {k.lstrip('module.'):v for k, v in loadedDict['model_state_dict'].items()}
    if torch.cuda.device_count() > 1:
        #current network requires 'module'
        loadedDict['model_state_dict'] = {'module.'+k : v for k, v in loadedDict['model_state_dict'].items()}

    #filling in weights from saved shared model to model
    pretrainedDict = loadedDict['model_state_dict']
    pretrainedTaskParams = loadedDict['task_params']
    #print('pretrained model keys: ', pretrainedDict.keys())
    modelDict = self.network.state_dict()
    #print('new model keys: ', modelDict.keys())

    logger.info('transferring weight of shared model')
    updateDict = {k :pretrainedDict[k] for k in modelDict if k.startswith('sharedModel') or k.startswith('poolerLayer')}
    logger.info('number of parameters transferred for shared model {}'.format(len(updateDict)))

    logger.info('looking for common parameters for task specific headers...')
    for taskId, taskName in pretrainedTaskParams.taskIdNameMap.items():
        for key in modelDict:
            if key.startswith('allHeaders.{}'.format(taskName)):
                updateDict[key] = pretrainedDict[key]
                logger.info('transferring parameter for task header: {}'.format(taskName))
    
    #print('update dict: ', updateDict.keys())
    modelDict.update(updateDict)
    self.network.load_state_dict(modelDict)

    if freeze is True:
        for name, param in self.network.named_parameters():
            if name.startswith('sharedModel'):
                param.requires_grad = False
        logger.info("shared model weights frozen for finetune..")'''

Can you show the error statement and the line it was on?

File “train.py”, line 310, in main
evaluate(allDataDev, BatchSamplerDev, multiTaskDataLoaderDev, taskParams,
File “/netscratch/sripathi/task2/new_nlp/multi-task-NLP/models/eval.py”, line 26, in evaluate
prediction, scores = model.predict_step(batchMetaData, batchData)
File “/netscratch/sripathi/task2/new_nlp/multi-task-NLP/models/model.py”, line 265, in predict_step
outLogits = self.network(*modelInputs)
File “/netscratch/sripathi/anaconda3/lib/python3.8/site-packages/torch/nn/modules/module.py”, line 727, in _call_impl
result = self.forward(*input, **kwargs)
File “/netscratch/sripathi/task2/new_nlp/multi-task-NLP/models/model.py”, line 120, in forward
logits = self.allHeaderstaskName
File “/netscratch/sripathi/anaconda3/lib/python3.8/site-packages/torch/nn/modules/module.py”, line 727, in _call_impl
result = self.forward(*input, **kwargs)
File “/netscratch/sripathi/anaconda3/lib/python3.8/site-packages/torch/nn/modules/linear.py”, line 93, in forward
return F.linear(input, self.weight, self.bias)
File “/netscratch/sripathi/anaconda3/lib/python3.8/site-packages/torch/nn/functional.py”, line 1688, in linear
if input.dim() == 2 and bias is not None:
AttributeError: ‘tuple’ object has no attribute ‘dim’

The error has something to do with your inputs modelInputs in the predict_step function. Can you print out the type of the modelInputs and the type of the batchData?