Hello,
I am trying to add more layers to inception v3 to fit my dataset. Yet, I don’t figure out the Runtime Error. my input is (3* 256 * 256)
model = models.inception_v3(init_weights=True, pretrained=False)
fc_feat = model.fc.in_features
model.fc = nn.Sequential(
nn.Linear(fc_feat, 512),
nn.ReLU(),
nn.Linear(512,3),
)
train_model(model, optimizer, scheduler, 10)
Error:
RuntimeError Traceback (most recent call last)
<ipython-input-66-f4a3ac1ce1ac> in <module>()
----> 1 train_model(model, optimizer, scheduler, 10)
11 frames
/usr/local/lib/python3.6/dist-packages/torch/nn/modules/conv.py in _conv_forward(self, input, weight)
418 _pair(0), self.dilation, self.groups)
419 return F.conv2d(input, weight, self.bias, self.stride,
--> 420 self.padding, self.dilation, self.groups)
421
422 def forward(self, input: Tensor) -> Tensor:
RuntimeError: Calculated padded input size per channel: (4 x 4). Kernel size: (5 x 5). Kernel size can't be greater than actual input size
Thanks in advance!