This is the result I get ,Here you are :
...
Pre-processing Successful!
Files already downloaded and verified
prune.py:112: UserWarning: volatile was removed and now has no effect. Use `with torch.no_grad():` instead.
data, target = Variable(data, volatile=True), Variable(target)
Test set: Accuracy: 1000/10000 (10.0%)
cfg/simpnet
DataParallel(
(module): simpnet(
(features): Sequential(
(0): Conv2d(3, 66, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(66, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(2): ReLU(inplace)
(3): Conv2d(66, 128, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(4): BatchNorm2d(128, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(5): ReLU(inplace)
(6): Conv2d(128, 128, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(7): BatchNorm2d(128, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(8): ReLU(inplace)
(9): Conv2d(128, 128, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(10): BatchNorm2d(128, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(11): ReLU(inplace)
(12): Conv2d(128, 192, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(13): BatchNorm2d(192, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(14): ReLU(inplace)
(15): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=(1, 1), ceil_mode=False)
(16): Dropout2d(p=0.05)
(17): Conv2d(192, 192, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(18): BatchNorm2d(192, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(19): ReLU(inplace)
(20): Conv2d(192, 192, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(21): BatchNorm2d(192, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(22): ReLU(inplace)
(23): Conv2d(192, 192, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(24): BatchNorm2d(192, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(25): ReLU(inplace)
(26): Conv2d(192, 192, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(27): BatchNorm2d(192, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(28): ReLU(inplace)
(29): Conv2d(192, 288, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(30): BatchNorm2d(288, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(31): ReLU(inplace)
(32): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=(1, 1), ceil_mode=False)
(33): Dropout2d(p=0.05)
(34): Conv2d(288, 288, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(35): BatchNorm2d(288, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(36): ReLU(inplace)
(37): Conv2d(288, 355, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(38): BatchNorm2d(355, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(39): ReLU(inplace)
(40): Conv2d(355, 432, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(41): BatchNorm2d(432, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(42): ReLU(inplace)
)
(classifier): Linear(in_features=432, out_features=10, bias=True)
)
)
simpnet(
(features): Sequential(
(0): Conv2d(3, 66, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(66, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(2): ReLU(inplace)
(3): Conv2d(66, 128, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(4): BatchNorm2d(128, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(5): ReLU(inplace)
(6): Conv2d(128, 128, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(7): BatchNorm2d(128, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(8): ReLU(inplace)
(9): Conv2d(128, 128, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(10): BatchNorm2d(128, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(11): ReLU(inplace)
(12): Conv2d(128, 192, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(13): BatchNorm2d(192, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(14): ReLU(inplace)
(15): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=(1, 1), ceil_mode=False)
(16): Dropout2d(p=0.05)
(17): Conv2d(192, 192, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(18): BatchNorm2d(192, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(19): ReLU(inplace)
(20): Conv2d(192, 192, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(21): BatchNorm2d(192, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(22): ReLU(inplace)
(23): Conv2d(192, 192, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(24): BatchNorm2d(192, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(25): ReLU(inplace)
(26): Conv2d(192, 192, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(27): BatchNorm2d(192, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(28): ReLU(inplace)
(29): Conv2d(192, 288, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(30): BatchNorm2d(288, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(31): ReLU(inplace)
(32): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=(1, 1), ceil_mode=False)
(33): Dropout2d(p=0.05)
(34): Conv2d(288, 288, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(35): BatchNorm2d(288, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(36): ReLU(inplace)
(37): Conv2d(288, 355, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(38): BatchNorm2d(355, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(39): ReLU(inplace)
(40): Conv2d(355, 432, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(41): BatchNorm2d(432, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(42): ReLU(inplace)
)
(classifier): Linear(in_features=432, out_features=10, bias=True)
)
simpnet(
(features): Sequential(
(0): Conv2d(3, 66, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(66, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(2): ReLU(inplace)
(3): Conv2d(66, 128, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(4): BatchNorm2d(128, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(5): ReLU(inplace)
(6): Conv2d(128, 128, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(7): BatchNorm2d(128, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(8): ReLU(inplace)
(9): Conv2d(128, 128, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(10): BatchNorm2d(128, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(11): ReLU(inplace)
(12): Conv2d(128, 192, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(13): BatchNorm2d(192, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(14): ReLU(inplace)
(15): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=(1, 1), ceil_mode=False)
(16): Dropout2d(p=0.05)
(17): Conv2d(192, 192, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(18): BatchNorm2d(192, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(19): ReLU(inplace)
(20): Conv2d(192, 192, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(21): BatchNorm2d(192, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(22): ReLU(inplace)
(23): Conv2d(192, 192, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(24): BatchNorm2d(192, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(25): ReLU(inplace)
(26): Conv2d(192, 192, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(27): BatchNorm2d(192, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(28): ReLU(inplace)
(29): Conv2d(192, 288, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(30): BatchNorm2d(288, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(31): ReLU(inplace)
(32): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=(1, 1), ceil_mode=False)
(33): Dropout2d(p=0.05)
(34): Conv2d(288, 288, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(35): BatchNorm2d(288, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(36): ReLU(inplace)
(37): Conv2d(288, 355, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(38): BatchNorm2d(355, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(39): ReLU(inplace)
(40): Conv2d(355, 432, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(41): BatchNorm2d(432, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(42): ReLU(inplace)
)
(classifier): Linear(in_features=432, out_features=10, bias=True)
)
Sequential(
(0): Conv2d(3, 66, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(66, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(2): ReLU(inplace)
(3): Conv2d(66, 128, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(4): BatchNorm2d(128, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(5): ReLU(inplace)
(6): Conv2d(128, 128, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(7): BatchNorm2d(128, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(8): ReLU(inplace)
(9): Conv2d(128, 128, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(10): BatchNorm2d(128, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(11): ReLU(inplace)
(12): Conv2d(128, 192, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(13): BatchNorm2d(192, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(14): ReLU(inplace)
(15): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=(1, 1), ceil_mode=False)
(16): Dropout2d(p=0.05)
(17): Conv2d(192, 192, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(18): BatchNorm2d(192, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(19): ReLU(inplace)
(20): Conv2d(192, 192, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(21): BatchNorm2d(192, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(22): ReLU(inplace)
(23): Conv2d(192, 192, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(24): BatchNorm2d(192, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(25): ReLU(inplace)
(26): Conv2d(192, 192, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(27): BatchNorm2d(192, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(28): ReLU(inplace)
(29): Conv2d(192, 288, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(30): BatchNorm2d(288, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(31): ReLU(inplace)
(32): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=(1, 1), ceil_mode=False)
(33): Dropout2d(p=0.05)
(34): Conv2d(288, 288, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(35): BatchNorm2d(288, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(36): ReLU(inplace)
(37): Conv2d(288, 355, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(38): BatchNorm2d(355, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(39): ReLU(inplace)
(40): Conv2d(355, 432, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(41): BatchNorm2d(432, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(42): ReLU(inplace)
)
Sequential(
(0): Conv2d(3, 66, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(66, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(2): ReLU(inplace)
(3): Conv2d(66, 128, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(4): BatchNorm2d(128, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(5): ReLU(inplace)
(6): Conv2d(128, 128, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(7): BatchNorm2d(128, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(8): ReLU(inplace)
(9): Conv2d(128, 128, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(10): BatchNorm2d(128, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(11): ReLU(inplace)
(12): Conv2d(128, 192, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(13): BatchNorm2d(192, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(14): ReLU(inplace)
(15): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=(1, 1), ceil_mode=False)
(16): Dropout2d(p=0.05)
(17): Conv2d(192, 192, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(18): BatchNorm2d(192, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(19): ReLU(inplace)
(20): Conv2d(192, 192, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(21): BatchNorm2d(192, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(22): ReLU(inplace)
(23): Conv2d(192, 192, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(24): BatchNorm2d(192, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(25): ReLU(inplace)
(26): Conv2d(192, 192, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(27): BatchNorm2d(192, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(28): ReLU(inplace)
(29): Conv2d(192, 288, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(30): BatchNorm2d(288, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(31): ReLU(inplace)
(32): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=(1, 1), ceil_mode=False)
(33): Dropout2d(p=0.05)
(34): Conv2d(288, 288, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(35): BatchNorm2d(288, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(36): ReLU(inplace)
(37): Conv2d(288, 355, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(38): BatchNorm2d(355, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(39): ReLU(inplace)
(40): Conv2d(355, 432, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
(41): BatchNorm2d(432, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
(42): ReLU(inplace)
)
Conv2d(3, 66, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
Conv2d(3, 66, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
BatchNorm2d(66, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
BatchNorm2d(66, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
ReLU(inplace)
ReLU(inplace)
Conv2d(66, 128, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
Conv2d(66, 128, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
BatchNorm2d(128, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
BatchNorm2d(128, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
ReLU(inplace)
ReLU(inplace)
Conv2d(128, 128, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
Conv2d(128, 128, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
BatchNorm2d(128, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
BatchNorm2d(128, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
ReLU(inplace)
ReLU(inplace)
Conv2d(128, 128, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
Conv2d(128, 128, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
BatchNorm2d(128, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
BatchNorm2d(128, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
ReLU(inplace)
ReLU(inplace)
Conv2d(128, 192, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
Conv2d(128, 192, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
BatchNorm2d(192, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
BatchNorm2d(192, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
ReLU(inplace)
ReLU(inplace)
MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=(1, 1), ceil_mode=False)
MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=(1, 1), ceil_mode=False)
Dropout2d(p=0.05)
Dropout2d(p=0.05)
Conv2d(192, 192, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
Conv2d(192, 192, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
BatchNorm2d(192, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
BatchNorm2d(192, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
ReLU(inplace)
ReLU(inplace)
Conv2d(192, 192, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
Conv2d(192, 192, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
BatchNorm2d(192, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
BatchNorm2d(192, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
ReLU(inplace)
ReLU(inplace)
Conv2d(192, 192, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
Conv2d(192, 192, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
BatchNorm2d(192, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
BatchNorm2d(192, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
ReLU(inplace)
ReLU(inplace)
Conv2d(192, 192, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
Conv2d(192, 192, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
BatchNorm2d(192, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
BatchNorm2d(192, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
ReLU(inplace)
ReLU(inplace)
Conv2d(192, 288, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
Conv2d(192, 288, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
BatchNorm2d(288, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
BatchNorm2d(288, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
ReLU(inplace)
ReLU(inplace)
MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=(1, 1), ceil_mode=False)
MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=(1, 1), ceil_mode=False)
Dropout2d(p=0.05)
Dropout2d(p=0.05)
Conv2d(288, 288, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
Conv2d(288, 288, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
BatchNorm2d(288, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
BatchNorm2d(288, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
ReLU(inplace)
ReLU(inplace)
Conv2d(288, 355, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
Conv2d(288, 355, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
BatchNorm2d(355, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
BatchNorm2d(355, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
ReLU(inplace)
ReLU(inplace)
Conv2d(355, 432, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
Conv2d(355, 432, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
BatchNorm2d(432, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
BatchNorm2d(432, eps=1e-05, momentum=0.05, affine=True, track_running_stats=True)
ReLU(inplace)
ReLU(inplace)
Linear(in_features=432, out_features=10, bias=True)
----------------------------------------
idx0 values : [0 1 2] idx1 values :[ 0 1 3 5 8 9 18 20 21 26 27 31 33 34 41 46 50 51 54 57 59 65]
idx0 shape: (3,) idx1 shape:(22,)
In shape: 3 Out shape:22
Traceback (most recent call last):
File "prune.py", line 142, in <module>
m1.weight.data = m0.weight.data[idx1].clone()
File "/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py", line 532, in __getattr__
type(self).__name__, name))
AttributeError: 'ReLU' object has no attribute 'weight'