Hi,
I’m running a PyTorch YOLO-based inference on a Jetson Orin Nano Super , and I frequently get these errors (not always, but randomly):
NvMapMemAllocInternalTagged: 1075072515 error 12
NvMapMemHandleAlloc: error 0
Error : NVML_SUCCESS == r INTERNAL ASSERT FAILED at "/opt/pytorch/pytorch/c10/cuda/CUDACachingAllocator.cpp":838, please report a bug to PyTorch.
I tried the following, but the issue still occurs:
with torch.no_grad() during inference
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
Full cleanup using torch.cuda.empty_cache(), gc.collect(), and reloading the model
The error isn’t always caught by try/except and sometimes crashes the process.
Setup:
Questions:
Is this a PyTorch issue or a Jetson memory allocator issue (NvMapMemAlloc)?
Any known fix or configuration to prevent this intermittent error?
Thanks in advance for any suggestions.
Are you running out of memory? Also, which build are you using?
Oron
November 2, 2025, 3:10pm
3
Hi,
I’m having the same issue.
Error:
NvMapMemAllocInternalTagged: 1075072515 error 12
NvMapMemHandleAlloc: error 0
NvMapMemAllocInternalTagged: 1075072515 error 12
NvMapMemHandleAlloc: error 0
NvMapMemAllocInternalTagged: 1075072515 error 12
NvMapMemHandleAlloc: error 0
NvMapMemAllocInternalTagged: 1075072515 error 12
NvMapMemHandleAlloc: error 0
NvMapMemAllocInternalTagged: 1075072515 error 12
NvMapMemHandleAlloc: error 0
Error: NVML_SUCCESS == r INTERNAL ASSERT FAILED at "/opt/pytorch/c10/cuda/CUDACachingAllocator.cpp":1131, please report a bug to PyTorch.
System Information:
Jetson Model: NVIDIA Jetson Orin Nano Engineering Reference Developer Kit SuperLinux, Ubuntu 22.04.5 LTS
CPU Model: ARMv8 Processor rev 1 (v8l)CPU Cores: 6Architecture: aarch64
CUDA Compiler: Cuda compilation tools, release 12.6, V12.6.68
cuDNN Version:CUDNN_MAJOR 9CUDNN_MINOR 3CUDNN_PATCHLEVEL 0CUDNN_VERSION (CUDNN_MAJOR
TensorRT:libnvinfer-bin 10.3.0.30-1+cuda12.5libnvinfer-dev 10.3.0.30-1+cuda12.5libnvinfer-dispatch-dev 10.3.0.30-1+cuda12.5
Python Version: 3.10.12
PyTorch Version: 2.8.0PyTorch CUDA Available: TruePyTorch CUDA Version: 12.6PyTorch cuDNN Version: 90300PyTorch cuDNN Enabled: True
GPU Count: 1
GPU 0:Name: OrinCompute Capability: (8, 7)Total Memory: 7.44 GBMulti Processor Count: 8
TorchVision Version: 0.23.0
Any help or workarounds would be greatly appreciated.
Thanks in advance!
Thanks for the response.
I’ve monitored GPU and system memory in real time using jtop , and it doesn’t appear to be a straightforward out-of-memory condition; the crash occurs even when there’s available GPU memory.
Here are my setup details:
Device: Jetson Orin Nano Super (8 GB RAM)
JetPack: 6.2.1
PyTorch: 2.5.0a0+872d972e41.nv24.8
CUDA: 12.6
TorchVision: 0.19.1
RAM: 8 GB
Storage: 60 GB SD card + 1 TB SSD
Swap Memory: 25 GB