Hi,

I create my model within my main function. Then I send the model to training function and update model there. In that case, should I return the model back from the training function to use the trained model inside my main function ?

Here is a small snippet to describe what I’ve just asked:

def main():

model = BertForSequenceClassification(‘bert-base-cased’)

tokenizer = BertTokenizer(‘bert-base-cased’)

data = get_some_data()

train(model,tokenizer,data)

#So at this point when I use model to make predictions, is this a trained model or

#was train model just lost since I did not return it form train funciton ? (i.e. model = train(model…))

```
def train(model,data):
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args['weight_decay']},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters,lr=some_lr)
scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args['warmup_steps'], t_total=t_total)
model.train()
for x,y in data:
outputs = model(x)
loss = outputs[0]
loss.backward()
```