I HAVE the model code as:
class RNN(nn.Module):
“”“RNN module(cell type lstm or gru)”“”
def init(
self,
input_size,
hid_size,
num_rnn_layers=1,
dropout_p = 0.2,
bidirectional = False,
rnn_type = ‘lstm’,
):
super().init()
if rnn_type == 'lstm':
self.rnn_layer = nn.LSTM(
input_size=input_size,
hidden_size=hid_size,
num_layers=num_rnn_layers,
dropout=dropout_p if num_rnn_layers>1 else 0,
bidirectional=bidirectional,
batch_first=True,
)
else:
self.rnn_layer = nn.GRU(
input_size=input_size,
hidden_size=hid_size,
num_layers=num_rnn_layers,
dropout=dropout_p if num_rnn_layers>1 else 0,
bidirectional=bidirectional,
batch_first=True,
)
def forward(self, input):
outputs, hidden_states = self.rnn_layer(input)
return outputs, hidden_states
class RNNModel(nn.Module):
def init(
self,
input_size,
hid_size,
rnn_type,
bidirectional,
n_classes=5,
kernel_size=5,
):
super().init()
self.rnn_layer = RNN(
input_size=46,#hid_size * 2 if bidirectional else hid_size,
hid_size=hid_size,
rnn_type=rnn_type,
bidirectional=bidirectional
)
self.conv1 = ConvNormPool(
input_size=input_size,
hidden_size=hid_size,
kernel_size=kernel_size,
)
self.conv2 = ConvNormPool(
input_size=hid_size,
hidden_size=hid_size,
kernel_size=kernel_size,
)
self.avgpool = nn.AdaptiveAvgPool1d((1))
self.fc = nn.Linear(in_features=hid_size, out_features=n_classes)
def forward(self, input):
print("shape")
print(input.shape) # **shape isshape torch.Size([32, 1, 187])**
x = self.conv1(input)
x = self.conv2(x)
x, _ = self.rnn_layer(x)
x = self.avgpool(x)
x = x.view(-1, x.size(1) * x.size(2))
x = F.softmax(self.fc(x), dim=1)#.squeeze(1)
return x
when I create
m1=RNNModel(1, 64, ‘lstm’, True).to(device)
and run
#from torchsummary import summary
summary(m1,(1,187),32)
The following error raises:
AttributeError Traceback (most recent call last)
in
1 #from torchsummary import summary
----> 2 summary(m1,(1,187),32)
/opt/conda/lib/python3.7/site-packages/torchsummary/torchsummary.py in summary(model, input_size, batch_size, device)
70 # make a forward pass
71 # print(x.shape)
—> 72 model(*x)
73
74 # remove these hooks
/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
725 result = self._slow_forward(*input, **kwargs)
726 else:
→ 727 result = self.forward(*input, **kwargs)
728 for hook in itertools.chain(
729 _global_forward_hooks.values(),
in forward(self, input)
35 x = self.conv1(input)
36 x = self.conv2(x)
—> 37 x, _ = self.rnn_layer(x)
38 x = self.avgpool(x)
39 x = x.view(-1, x.size(1) * x.size(2))
/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
725 result = self._slow_forward(*input, **kwargs)
726 else:
→ 727 result = self.forward(*input, **kwargs)
728 for hook in itertools.chain(
729 _global_forward_hooks.values(),
in forward(self, input)
32 )
33 def forward(self, input):
—> 34 outputs, hidden_states = self.rnn_layer(input)
35 return outputs, hidden_states
/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
729 _global_forward_hooks.values(),
730 self._forward_hooks.values()):
→ 731 hook_result = hook(self, input, result)
732 if hook_result is not None:
733 result = hook_result
/opt/conda/lib/python3.7/site-packages/torchsummary/torchsummary.py in hook(module, input, output)
21 if isinstance(output, (list, tuple)):
22 summary[m_key][“output_shape”] = [
—> 23 [-1] + list(o.size())[1:] for o in output
24 ]
25 else:
/opt/conda/lib/python3.7/site-packages/torchsummary/torchsummary.py in (.0)
21 if isinstance(output, (list, tuple)):
22 summary[m_key][“output_shape”] = [
—> 23 [-1] + list(o.size())[1:] for o in output
24 ]
25 else:
AttributeError: ‘tuple’ object has no attribute ‘size’
in frwd layer i have commented i/p shape also shape isshape torch.Size([32, 1, 187])**
Batch size is 32
Why is this so??Pls help