I agree with you @ptrblck but I don’t see why obs is not valid in my pastebin above.
This is the output from my x86_64 laptop with Ubuntu 22.04 and (Py)Torch 2.3.0 cxx11 ABI installed standalone and compiled with colcon:
inputs: Columns 1 to 10 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
Columns 11 to 20 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -3.9500 2.3000 1.6500
Columns 21 to 28 0.6500 0.9000 1.6500 0.0000 0.0000 0.0000 0.0000 0.0000
[ CPUFloatType{1,28} ]
stds: 0.3192
0.1498
0.1619
0.4095
[ CPUFloatType{4} ]
random_sample: 1.8895
0.4808
-0.1694
0.9750
[ CPUFloatType{4} ]
action_mean_tensor: 0.8503 -0.7974 0.4450 -0.8844
[ CPUFloatType{1,4} ]
Action: 1.606528 -0.383409 -0.075384 -0.862261
inputs: Columns 1 to 10-0.0076 0.0016 0.0101 0.8693 0.1434 -0.4731 -0.1096 0.9891 0.0984 0.4821
Columns 11 to 20-0.0337 0.8755 -0.3785 0.0787 0.5042 -3.4581 -25.0000 -6.6201 -3.9424 2.2984
Columns 21 to 28 1.6399 0.6576 0.8984 1.6399 1.4953 -0.1383 -1.2073 -0.4413
[ CPUFloatType{1,28} ]
stds: 0.3192
0.1498
0.1619
0.4095
[ CPUFloatType{4} ]
random_sample: -0.7742
-2.2891
-0.8089
0.3901
[ CPUFloatType{4} ]
action_mean_tensor: 1.7387 -0.1351 0.0408 -0.4169
[ CPUFloatType{1,4} ]
Action: -1.346089 0.309363 -0.033036 -0.162666
inputs: Columns 1 to 10-0.0216 0.0067 0.0304 0.7917 0.4566 -0.4058 -0.3988 0.8895 0.2228 0.4627
Columns 11 to 20-0.0146 0.8864 -0.7031 0.2570 1.0170 -6.9673 1.4978 -15.0000 -3.9284 2.2933
Columns 21 to 28 1.6196 0.6716 0.8933 1.6196 2.1924 -0.2787 0.0599 -1.1601
[ CPUFloatType{1,28} ]
stds: 0.3192
0.1498
0.1619
0.4095
[ CPUFloatType{4} ]
random_sample: 1.5993
-1.9500
-0.9119
-1.6646
[ CPUFloatType{4} ]
action_mean_tensor: 1.8872 0.0295 -0.7745 0.0846
[ CPUFloatType{1,4} ]
Action: 3.018301 -0.057587 0.706246 -0.140806
This is the output from the Orin NX that uses (Py)Torch 2.1.0 wheel (Ubuntu 20.04) and compiled with colcon:
PyTorch version: 2.1.0
inputs: Columns 1 to 10 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
Columns 11 to 20 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -3.9500 2.3000 1.6500
Columns 21 to 28 0.6500 0.9000 1.6500 0.0000 0.0000 0.0000 0.0000 0.0000
[ CPUFloatType{1,28} ]
stds: 0.3192
0.1498
0.1619
0.4095
[ CPUFloatType{4} ]
random_sample: -0.7111
0.0454
-0.2371
-0.6546
[ CPUFloatType{4} ]
action_mean_tensor: 0.8503 -0.7974 0.4450 -0.8844
[ CPUFloatType{1,4} ]
Action: -0.604600 -0.036172 -0.105509 0.578925
inputs: Columns 1 to 10-0.0076 0.0016 0.0101 0.8693 0.1434 -0.4731 -0.1096 0.9891 0.0984 0.4821
Columns 11 to 20-0.0337 0.8755 -0.3785 0.0787 0.5042 -3.4581 -25.0000 -6.6201 -3.9424 2.2984
Columns 21 to 28 1.6399 0.6576 0.8984 1.6399 1.4953 -0.1383 -1.2073 -0.4413
[ CPUFloatType{1,28} ]
stds: 0.3192
0.1498
0.1619
0.4095
[ CPUFloatType{4} ]
random_sample: 2.1585
-1.5461
-0.8058
0.0587
[ CPUFloatType{4} ]
action_mean_tensor: 1.7387 -0.1351 0.0408 -0.4169
[ CPUFloatType{1,4} ]
Action: 3.752915 0.208950 -0.032909 -0.024473
inputs: Columns 1 to 10-0.0216 0.0067 0.0304 0.7917 0.4566 -0.4058 -0.3988 0.8895 0.2228 0.4627
Columns 11 to 20-0.0146 0.8864 -0.7031 0.2570 1.0170 -6.9673 1.4978 -15.0000 -3.9284 2.2933
Columns 21 to 28 1.6196 0.6716 0.8933 1.6196 2.1924 -0.2787 0.0599 -1.1601
[ CPUFloatType{1,28} ]
stds: 0.3192
0.1498
0.1619
0.4095
[ CPUFloatType{4} ]
random_sample: 0.5744
-0.5015
-0.2751
-1.0906
[ CPUFloatType{4} ]
action_mean_tensor: -nan -nan -nan -nan
[ CPUFloatType{1,4} ]
Action: -nan -nan -nan -nan