Faced the following error:
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-39-94bd54aad11f> in <module>()
4 # get predictions for test data
5 with torch.no_grad():
----> 6 preds = model(test_seq.to(device), test_mask.to(device))
7 preds = preds.detach().cpu().numpy()
8 frames
/usr/local/lib/python3.7/dist-packages/torch/nn/functional.py in embedding(input, weight, padding_idx, max_norm, norm_type, scale_grad_by_freq, sparse)
1914 # remove once script supports set_grad_enabled
1915 _no_grad_embedding_renorm_(weight, input, max_norm, norm_type)
-> 1916 return torch.embedding(weight, input, padding_idx, scale_grad_by_freq, sparse)
1917
1918
RuntimeError: CUDA out of memory. Tried to allocate 11.22 GiB (GPU 0; 15.78 GiB total capacity; 12.10 GiB already allocated; 2.18 GiB free; 12.30 GiB reserved in total by PyTorch)
The prediction code is as follows:
# specify GPU
device = torch.device("cuda")
# get predictions for test data
with torch.no_grad():
preds = model(test_seq.to(device), test_mask.to(device))
preds = preds.detach().cpu().numpy()
What to do?