Model loss not decreasing via transfer learning

I tried playing around with learning rates, .01, .001, .0001
however my model loss and val loss are not decreasing.

I am using Densenet from Pytorch models, and have copied most of the code from the Pytorch transfer learning tutorial
which some few minor changes to print out val accuracy every x amount of batches. I think my minor changes could be affecting training somehow, but I am not sure what I am doing wrong.

Here is how my training looks even after first epoch

Training Loss: 8.5898 Acc: 0.0102
Epoch 1/2

val_loss 8.5163 val_acc: 0.0191
val_loss 8.9667 val_acc: 0.0255
val_loss 9.3078 val_acc: 0.0127
val_loss 8.7855 val_acc: 0.0318
val_loss 8.6217 val_acc: 0.0255
val_loss 9.0631 val_acc: 0.0191
val_loss 8.5167 val_acc: 0.0255
val_loss 9.0499 val_acc: 0.0191
val_loss 9.0549 val_acc: 0.0255
val_loss 8.8373 val_acc: 0.0191
val_loss 8.9288 val_acc: 0.0191
val_loss 8.9968 val_acc: 0.0127
val_loss 9.2790 val_acc: 0.0127
val_loss 9.4389 val_acc: 0.0191
val_loss 8.6907 val_acc: 0.0318
val_loss 9.0903 val_acc: 0.0191
val_loss 9.0093 val_acc: 0.0191
val_loss 9.4387 val_acc: 0.0127
val_loss 9.1059 val_acc: 0.0191
val_loss 9.3480 val_acc: 0.0127
val_loss 8.9435 val_acc: 0.0191
val_loss 8.4412 val_acc: 0.0318
val_loss 8.8712 val_acc: 0.0382
val_loss 8.9125 val_acc: 0.0191
val_loss 9.3815 val_acc: 0.0127
val_loss 9.0214 val_acc: 0.0191
val_loss 9.4234 val_acc: 0.0127
val_loss 9.1625 val_acc: 0.0191

Here is the code (I can’t seem to fix formatting on this site)

from future import print_function, division

import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy

def prepare_dataset_from_folder(data_dir, size, batch_size):

 """prepare datasets into dataloaders
args
------
data_dir = root_dir holding 'train_dir' and 'val_dir'

size = size of image

batch_size = batch_size
"""

data_transforms = {
    'training': transforms.Compose([
       transforms.Resize((size,size)),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
    'validation': transforms.Compose([
        transforms.Resize((size,size)),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
}


image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
                                          data_transforms[x])
                  for x in ['training', 'validation']}


dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size= batch_size,
                                             shuffle=True, num_workers=4) #num_workers leads to errors
              for x in ['training', 'validation']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['training', 'validation']}
class_names = image_datasets['training'].classes

return dataloaders, dataset_sizes, class_names

def train_model(model, criterion, optimizer, scheduler, num_epochs=3, best_acc = 80.0, batch_size = 5):
since = time.time()
dataloaders, dataset_sizes, class_names = prepare_dataset_from_folder(data_dir, size, batch_size)

for epoch in range(num_epochs):
    print('Epoch {}/{}'.format(epoch, num_epochs - 1))
    print('-' * 10)

    running_loss = 0.0
    running_corrects = 0

    for num, data in enumerate(dataloaders["training"]):
       
        if num % 100 == 0:
               val_running_loss = 0.0
               val_running_corrects = 0
               model.eval()

               for val_num, val_data in enumerate(dataloaders["validation"]):
                   inputs, labels = val_data
                   inputs = inputs.to(device)
                   labels = labels.to(device)
                   with torch.set_grad_enabled(False):
                       outputs = model(inputs)
                       _, preds = torch.max(outputs, 1)
                       loss = criterion(outputs, labels)

                   val_running_loss += loss.item() * inputs.size(0)
                   val_running_corrects += torch.sum(preds == labels.data)

               val_loss = ( val_running_loss/dataset_sizes['validation'])
               val_acc = (val_running_corrects.double() / dataset_sizes['validation'])#.cpu().numpy()
               print('val_loss  {:.4f} val_acc: {:.4f}'.format(val_loss, val_acc))
               if val_acc > best_acc:
                  print("Saving due to high val accuracy")
                  x = datetime.datetime.now()
                  time_stamp_str = str(x).split(' ')[0] + "_" 
                  save_path = os.path.join(SAVE_DIR, f"val_acc_{val_acc}.pt")
                  torch.save(model, save_path)


        model.train()
        inputs, labels = data
        inputs = inputs.to(device)
        labels = labels.to(device)
        scheduler.step()  
       
        optimizer.zero_grad()

        with torch.set_grad_enabled(True):
                outputs = model(inputs)
                _, preds = torch.max(outputs, 1)
                loss = criterion(outputs, labels)
                loss.backward()
                optimizer.step()

        running_loss += loss.item() * inputs.size(0)
        running_corrects += torch.sum(preds == labels.data)

    epoch_loss = running_loss / dataset_sizes['training']
    epoch_acc = running_corrects.double() / dataset_sizes['training']


    print('Training Loss: {:.4f} Acc: {:.4f}'.format(epoch_loss, epoch_acc))

time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))


return model

if name==“main”:

data_dir = "TEST 10"
device = torch.device("cuda:0")
PATH =" "
size = 224
batch_size = 5



# pick your model
#model_ft = torch.load(PATH)
#model_ft = models.resnet18(pretrained=True)
model_ft = models.densenet201(pretrained=True)



#num_ftrs = model_ft.fc.in_features #in features
num_ftrs = 1920 #densenet 201
#https://discuss.pytorch.org/t/what-does-the-fc-in-feature-mean/4889


model_ft.fc = nn.Linear(num_ftrs, 2)

model_ft = model_ft.to(device)

criterion = nn.CrossEntropyLoss()

# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)

# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=2, gamma=0.1)


model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler,
                       num_epochs=3, batch_size = batch_size)

Strangely if I use original script from transfer learning with minimal changes, my model begins to learn:

#original script

from future import print_function, division
import pretrainedmodels as ptmodels

import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import torchvision
from torchvision import datasets, models, transforms

import matplotlib.pyplot as plt
import time
import os
import copy

def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
since = time.time()

best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0

for epoch in range(num_epochs):
    print('Epoch {}/{}'.format(epoch, num_epochs - 1))
    print('-' * 10)

    # Each epoch has a training and validation phase
    for phase in ['training', 'validation']:
        if phase == 'training':
            scheduler.step()  #what is this
            model.train()  # Set model to training mode
        else:
            model.eval()   # Set model to evaluate mode

        running_loss = 0.0
        running_corrects = 0

        # Iterate over data.
        for num, data in enumerate(dataloaders[phase]):
            inputs, labels = data
            inputs = inputs.to(device)
            labels = labels.to(device)

            # zero the parameter gradients
            optimizer.zero_grad()

            # forward
            # track history if only in train
            with torch.set_grad_enabled(phase == 'training'):
                outputs = model(inputs)
                _, preds = torch.max(outputs, 1)
                loss = criterion(outputs, labels)

                # backward + optimize only if in training phase
                if phase == 'training':
                    loss.backward()
                    optimizer.step()

            # statistics
            running_loss += loss.item() * inputs.size(0)
            running_corrects += torch.sum(preds == labels.data)

            if num % 100 == 0:
                print("500 batches")
                temp_running_corrects = (running_corrects.double() / ( len(inputs) *  num + 1)).cpu().numpy()
                print(temp_running_corrects)
                #print('running_corrects', running_corrects/( len(inputs) *  num + 1).numpy())

        epoch_loss = running_loss / dataset_sizes[phase]
        epoch_acc = running_corrects.double() / dataset_sizes[phase]

        print('{} Loss: {:.4f} Acc: {:.4f}'.format(
            phase, epoch_loss, epoch_acc))

        # deep copy the model
        if phase == 'validation' and epoch_acc > best_acc:
            best_acc = epoch_acc
            best_model_wts = copy.deepcopy(model.state_dict())

    print()

time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
    time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))

# load best model weights
model.load_state_dict(best_model_wts)
save_path = os.path.join(SAVE_DIR, f"val_acc_{val_acc}.pt")
torch.save(model, save_path)

Training Loss:

Epoch 0/2

500 batches
0.0
500 batches
0.681592039800995
500 batches
0.6359102244389028
500 batches
0.6422628951747088
500 batches
0.6541822721598003
500 batches
0.6763236763236763
500 batches
0.694421315570358
500 batches
0.7059243397573162
500 batches
0.7108057464084947
500 batches
0.7096057745696835
500 batches
0.7126436781609196
500 batches
0.7142208087233075
500 batches
0.7251145356101625
500 batches
0.7293348712033834
500 batches
0.729382363441628
500 batches
0.7340886371209597
500 batches
0.7363323961262105
500 batches
0.7391943546015877
500 batches
0.7428492085531797
500 batches
0.7432254669823731
500 batches
0.74656335916021
500 batches
0.7493453939538205
500 batches
0.7521017950465804

Hey,

The code seems ok to me(training loop).
why don’t you first freeze the feature extractor of the densenet and train only the classifier? If that works then you can tune the features too ? After you declare the model

for param in model_ft.features.parameters():
    param.requires_grad = False

Now in the optimizer just train the classifier by modifying optimizer to train only classifier parameters.

optimizer = optim.SGD(filter(lambda p: p.requires_grad=True, model_ft.parameters()), lr=0.001)

Also evaluate for fewer iterations to see if it is learning. If this works better then I would suggest you to train classifier with same learning rate but feature extractor with lower lr like 5e-4 or 1e-4 may be ?

Thank you for your post.

I have noticed,

  1. If I use the original transfer learning script (from tutorial), my model seems to be learning I will post the script in the OP after this post. I am not sure what I am doing wrong in my revision

As for you post, thank you! If I wanted to train at different parts of the model at
different rates, do I create multiple optimizers?

Did you get the transfer learning tutorial working ? what were you doing wrong ?

For your question, You can do it either way creating 2 optimizers and updating individually or creating groups and setting values in the groups like

optimizer = torch.optim.SGD([{'params': filter(lambda p: p.requires_grad, model.features.parameters()), 'lr':1e-4, },
                             {'params': filter(lambda p: p.requires_grad, model.classifier.parameters())}], lr=1e-3, momentum=0.95, weight_decay=1e-5)

you can set parameters specific to every part of your model like above. And the values outside the list are like default values, will be used if not specifically set.

1 Like

Ah I see! . I haven’t gotten it working yet. I haven’t figured out why original code is working and not my revised code. There must be something wrong with my revised code. I will play around with a little more and see if I can figure it out.

EDIT:

Even turning almost all layers for training:

for param in model_ft.features.parameters():
    param.requires_grad = False

not resulting in improvements.

@MasayoMusic the problem is with the scheduler.step(), it is inside the for loop of the data enumerator. It has to be with epochs for loop. So every time the scheduler in the optimizer was making the weights zeros and thus every epoch has the same loss (as the first epoch).

I hope this helps someone with the same tiny mistake!

@preethamam That depends on the scheduler. Some schedulers (OneCycleLR, CyclicLR) should be called on every step. The specific scheduler used here (StepLR) should indeed be called every epoch.