My Training Loss doesn't change after each epoch

I am building a model for a mixed categories(with continuous and categorical variables using word embeddings with 2 linear layers.Its a binary classification problem.My training loss isn’t changing.It would be great if some one help.

I assume you are not shuffling the data using your DataLoader, since the losses seem to be quite deterministic.
Are you detaching the computation graph accidentally in your model’s forward method?
Also, are you using a custom loss function or a PyTorch one?

1 Like

Skimming through the code I cannot see anything obviously wrong.
Could you check some gradients after calling loss.backward()?
You could print them using:


If you see some None values, something is broken. Otherwise we would have to dig a bit deeper.

PS: You can add code snippets using three backticks ```
This makes it easier to copy your code and debug it. :wink:

These are the values I see when I print gradients of outputs and embeddings.

tensor([[-3.1623e-02, -2.6350e-02, -1.7309e-02, -6.1525e-03, -2.7841e-02,
         -2.6789e-02, -4.0986e-02,  1.1163e-02,  4.6091e-02,  2.4598e-02,
         -2.6607e-02, -2.6708e-03,  2.0545e-03,  1.3116e-02, -1.9225e-02,
          1.8009e-02, -7.0806e-02, -1.9697e-02, -1.6139e-02,  5.6194e-02,
         -8.7657e-02, -1.0188e-02, -1.5533e-02, -1.6141e-02,  2.0929e-02,
         -6.0323e-02,  5.4425e-02, -1.4522e-02, -1.2154e-02,  7.9580e-04,
         -9.7717e-03, -2.8365e-02,  1.0887e-02, -3.1096e-02, -7.4927e-03,
         -8.5017e-03, -3.7971e-03, -1.1083e-03, -2.4572e-02,  4.2590e-03,
         -4.3712e-02, -4.1331e-02, -2.7154e-02, -5.2349e-02, -5.9448e-02,
          3.4661e-02, -4.4277e-02, -1.3610e-02,  2.9865e-05, -1.3078e-02,
         -1.5869e-02, -5.1470e-03,  5.3503e-03,  5.3278e-02, -5.2516e-02,
         -1.4310e-02,  6.2403e-03,  6.2356e-03, -2.6851e-02,  5.1220e-03,
         -5.9708e-02, -6.0736e-02,  1.2995e-02, -2.0492e-02, -2.8461e-02,
         -3.2872e-02, -3.5934e-02,  2.7493e-02, -2.5135e-02, -3.2079e-02,
         -2.5752e-03,  4.8966e-03, -3.5285e-02, -3.0157e-02, -3.8634e-02,
          2.8084e-02, -4.8500e-02,  3.0333e-03, -5.3200e-02, -1.5738e-02,
         -2.8506e-02, -3.4487e-03,  4.0806e-02,  2.0268e-02, -1.5578e-02,
         -1.2922e-02,  3.8184e-03,  2.1328e-02,  2.1187e-02,  4.2885e-02,
         -7.1759e-02, -1.4990e-02,  7.2830e-02, -2.4386e-02, -4.7653e-03,
         -2.1303e-02, -6.4600e-02,  4.3422e-02,  1.4864e-02, -4.8731e-02,
          3.9190e-02,  4.2304e-03,  1.5949e-02, -1.5027e-02, -2.4129e-02,
         -1.9980e-02, -3.4105e-02,  1.3001e-02, -1.7983e-02,  3.3862e-02,
         -4.7518e-02, -9.4020e-03, -2.7877e-02, -4.5408e-02,  1.3022e-02,
          1.0548e-02, -1.8343e-02, -1.6114e-02, -1.3189e-02,  1.1662e-03,
          1.2975e-02,  5.7757e-02,  1.3618e-02, -2.8639e-02, -3.9885e-02,
         -5.5618e-02, -2.3285e-02, -6.9030e-05, -5.9235e-02, -3.2400e-02,
         -2.9226e-02, -6.5258e-02, -3.5231e-02, -3.4279e-02,  2.3250e-02,
          1.7370e-03, -9.1888e-03, -1.1221e-02,  1.5109e-02, -5.0923e-02,
          4.2830e-02, -3.7013e-03, -5.5487e-02, -1.8025e-02,  3.4591e-02,
          7.0318e-02,  3.1747e-02,  3.8931e-02, -1.8351e-02, -9.3918e-03,
         -3.4855e-02, -2.8251e-02,  3.6465e-03,  3.7266e-02, -9.6779e-02,
          5.0921e-03, -2.8991e-02,  6.8520e-03,  9.7878e-03, -2.8903e-02,
         -1.6398e-02, -1.5751e-03, -1.8113e-02, -4.0756e-03, -1.7850e-02,
         -1.0662e-02, -7.5500e-02, -8.3943e-02, -1.1067e-02, -2.7160e-02,
         -2.2912e-02, -2.0004e-03,  2.8608e-02, -4.0171e-02,  1.7596e-02,
         -2.1385e-02,  2.4988e-02, -1.4092e-02, -1.5201e-02,  4.9917e-02,
          1.0833e-02,  8.0092e-03,  4.3952e-02,  3.6990e-02,  4.9020e-03,
         -2.5192e-02, -2.1895e-02,  2.8979e-02,  9.2480e-04, -3.5609e-02,
         -1.1323e-02,  2.3988e-02, -6.2246e-03,  1.1821e-02, -2.8954e-02,
          8.4986e-04,  9.8768e-03,  1.9290e-02, -3.8933e-02,  3.4948e-03,
          3.5462e-02, -3.0178e-02, -5.5254e-03,  1.4226e-03, -5.1838e-03,
         -2.4739e-02, -1.9127e-02, -4.4689e-03, -6.8476e-02, -2.7002e-02,
         -6.2134e-02, -2.6698e-02, -2.2844e-02, -2.1762e-02, -1.5398e-02,
         -3.7795e-02, -5.8228e-03,  1.8611e-02, -4.9444e-03, -2.4235e-02,
          3.1925e-04,  4.2813e-02, -6.5582e-03, -4.9425e-02,  2.1836e-02,
         -2.9703e-02, -9.8694e-02, -4.1492e-02, -2.1444e-02,  5.7452e-03,
         -3.1103e-02,  7.3129e-03,  1.7087e-03,  3.5748e-02,  1.8767e-02,
          1.7446e-02, -1.8929e-02, -7.9848e-02,  7.3374e-04,  2.8640e-02,
          2.9640e-03, -8.9208e-03,  7.3254e-03, -1.5448e-02, -1.9306e-03,
         -6.7582e-02,  2.0013e-02, -2.0523e-02, -2.6685e-03, -5.7062e-02,
          4.8704e-03,  5.6583e-02,  8.2884e-02,  2.9788e-02, -8.3444e-04,
         -2.8515e-02, -7.6275e-03,  5.2626e-03,  5.4316e-03, -3.3708e-02,
         -1.2808e-02,  1.4598e-02, -4.6423e-02,  3.5671e-02,  2.8519e-02,
          3.9008e-02, -1.2556e-02, -1.3970e-02, -1.8020e-02, -1.3051e-02,
          2.3781e-03, -1.7507e-02, -5.3407e-02,  6.4795e-03, -6.4268e-03,
         -2.6923e-02,  3.6155e-02,  9.6456e-03, -2.1730e-02, -1.3292e-02,
         -8.0084e-03, -5.0160e-03, -1.4873e-02, -6.1040e-02, -2.1741e-02,
          3.1036e-02, -2.3044e-03,  9.3973e-04,  1.0799e-02,  1.3042e-02,
         -1.1986e-02,  1.9876e-02,  1.9210e-02, -5.8544e-02, -5.8250e-02,
          2.0442e-02,  1.5879e-02, -1.5362e-02, -2.3519e-02, -6.4135e-02,
         -1.0467e-02,  3.9432e-03,  2.2478e-02, -1.4194e-02, -2.5212e-02,
         -3.7196e-02, -1.1732e-02,  2.6087e-02, -6.3475e-03,  1.1559e-02,
          4.3142e-03, -9.9321e-03,  2.0739e-02, -4.9002e-02,  1.8722e-03,
         -5.0559e-02, -1.5068e-02, -4.1370e-02,  3.7180e-02,  6.4168e-02,
          1.0479e-02, -2.0402e-03,  1.2502e-02, -3.5288e-02, -5.9934e-04,
          1.5053e-02, -6.1099e-03, -2.6714e-02,  9.9228e-03,  2.1643e-02,
          4.9815e-03, -7.8759e-04, -2.0461e-02, -3.7384e-02, -1.5176e-02,
         -3.6167e-02,  6.8868e-02, -4.4166e-03, -3.4864e-02, -3.3638e-02,
          1.9990e-02,  6.2415e-03, -2.7875e-02, -2.7577e-02, -4.2171e-02,
          3.8956e-02,  6.3638e-02,  2.7637e-03,  1.9848e-02,  2.3079e-02,
          3.6044e-02, -1.7952e-02, -1.7918e-02,  6.9048e-02,  3.5189e-02,
          1.9060e-02,  4.7532e-02, -6.4268e-02, -3.3150e-02, -2.4915e-02,
         -1.1871e-02,  7.7971e-03,  1.6802e-02, -6.7766e-03, -6.0042e-02,
          6.7299e-02,  1.8261e-02, -3.1467e-02,  1.8212e-03,  3.1181e-03,
         -5.2383e-02, -2.1561e-02, -3.2257e-02,  5.0996e-02, -1.5949e-02,
         -3.0735e-02,  6.4452e-02, -9.1218e-03, -1.4836e-02,  4.4239e-02,
         -3.9941e-02, -4.5105e-03, -1.2341e-02, -3.3473e-02, -8.3403e-03,
         -3.4777e-02, -1.1807e-02, -4.1881e-02, -2.6477e-02,  8.2249e-03,
         -1.3171e-02,  3.9644e-02, -2.6130e-02, -1.0104e-02, -1.8376e-02,
         -2.3920e-02, -4.3445e-02,  2.3253e-02, -2.4548e-02, -5.0419e-02,
          2.6859e-02, -3.2329e-03, -2.5221e-02, -1.6766e-03, -3.2432e-02,
         -3.7509e-02, -5.2284e-02, -9.5738e-02, -4.9757e-02, -3.4016e-02,
          6.3242e-02, -4.0427e-02,  1.0408e-02, -1.0845e-02,  5.4411e-02,
          6.9872e-02,  7.1449e-03,  1.8818e-02,  1.1320e-02, -2.1045e-02,
          2.0577e-02,  3.1659e-02, -1.6194e-03, -2.5389e-02, -4.5406e-02,
         -4.8093e-03,  1.1047e-03, -1.5277e-02, -2.2355e-02,  1.1083e-02,
         -5.2939e-02, -5.4026e-02,  7.7325e-03, -3.7525e-02, -4.8978e-03,
          2.6263e-03, -4.6975e-02,  1.0279e-02,  3.5905e-02, -1.6772e-02,
          4.8599e-03,  3.5422e-02, -6.1347e-02,  1.3385e-02,  1.8079e-02,
         -1.1148e-02,  3.1458e-03, -5.7805e-02, -4.9902e-02, -4.0210e-02,
         -1.7585e-02,  1.9289e-02, -6.7882e-03,  3.2867e-02, -2.5522e-02,
          5.1807e-03, -1.2839e-03, -4.5885e-03,  4.4152e-02, -5.5047e-02,
         -4.6421e-02, -3.1257e-02,  5.3186e-02,  4.6530e-02,  3.6265e-02,
         -5.1960e-02, -1.4269e-02, -8.0705e-03, -2.9653e-02, -5.6376e-02,
         -3.9184e-02,  6.1064e-02,  7.2560e-04, -4.7297e-03, -4.9365e-02,
          8.8795e-03,  3.3561e-02,  3.2388e-02, -2.4099e-02,  9.2907e-04,
         -1.6416e-02,  2.3246e-02,  8.7383e-02, -2.3976e-03, -1.9337e-02,
         -3.6302e-02, -4.7792e-03, -3.4619e-02, -3.7661e-02,  7.1462e-04,
         -8.2786e-02, -2.0263e-02,  1.2210e-02,  1.0964e-02, -1.2815e-02,
          4.0427e-02, -4.1053e-02, -7.4282e-02, -1.5011e-02, -2.0446e-02]],
tensor([[ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000],
        [ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000],
        [ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000],
        [ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000],
        [ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000],
        [ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000],
        [ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000],
        [ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000],
        [ 0.0081,  0.0107,  0.0280, -0.0123,  0.0071],
        [-0.0076, -0.0142, -0.0112,  0.0065, -0.0092]], dtype=torch.float64)

The gradients seem to be valid and also your loss moves.
I would suggest to play around with the hyperparameters of your training, e.g. lower the learning rate and observe if the training loss decreases a bit steadier.