I am using a custom dataset with model as:
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(35, 512)
        self.fc2 = nn.Linear(512, 512)
        self.fc3 = nn.Linear(512, 6)
    def forward(self, x):
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = F.relu(self.fc3(x))
        return x
With the training function as:
self.criterion = nn.CrossEntropyLoss()   
self.model = torch.nn.DataParallel(self.model, device_ids=range(torch.cuda.device_count()))
   def train(self):
        valid_running_loss = 0.0
        use_cuda = torch.cuda.is_available()
        device = torch.device("cuda:0" if use_cuda else "cpu")
        torch.backends.cudnn.benchmark = True
        self.model.to(device)
        optimizer = torch.optim.SGD(self.model.parameters(), lr=0.000_000_000_001)
        criterion = nn.CrossEntropyLoss()
        running_loss = 0
        loss_values = []
        for epoch in range(self.epochs):
            self.model.train()
            for batch_idx, (target, dat) in enumerate(self.train_loader):
                target, data =  Variable(
                    target.cuda()), Variable(dat.cuda())
                optimizer.zero_grad()
                output = self.model(dat)
                loss = criterion(output, target.flatten().to(device).long())
                loss.backward()
                optimizer.step()
                loss_values.append(running_loss/20)
                running_loss += loss.item()
                if batch_idx % 20 == 19:
                    print('Training [%d, %5d] loss: %.3f' %
                          (epoch + 1, batch_idx + 1, running_loss / 20))
                    running_loss = 0.0
                    torch.save(self.model.state_dict(), 'model.pt')
plt.plot(loss_values)
plt.xlabel("Batches")
plt.ylabel("Loss")
plt.show()
Output loss graph is as follows:

And output from each layer mostly follows the same pattern:
Layer #1 
tensor([[34.0111, 12.7092, 16.9817, 14.5254,  0.0000,  2.9979, 34.6398, 28.0957,
         24.6492,  0.0000,  0.0000, 20.6735, 55.1613,  0.0000, 43.1130, 38.0405,
          8.2961,  0.0000,  0.0000,  0.0000, 24.0659, 13.8045,  4.9426,  0.1992,
         34.9194,  0.0000,  0.0000, 19.0288,  0.0000, 22.8025,  0.0000,  0.0000,
          0.7127,  0.0000, 48.1853, 33.9753,  0.0000,  0.0000, 13.2362,  0.0000,
         44.4921,  9.9233, 38.6005, 35.1910, 19.6216, 37.5149,  1.4502,  0.0000,
         12.4940, 72.6231,  0.0000,  0.0000, 27.0568,  0.0000, 25.1401,  0.0000,
         11.9196, 19.1825,  0.0000, 21.7884,  0.0000, 27.3251, 12.9470, 16.1076,
         20.6509,  0.0000, 19.3813, 13.8918, 14.7036,  0.0000, 43.9978,  0.0000,
          0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000,
         35.3095,  0.0000,  0.0000, 12.3495,  0.0000, 17.0042,  0.0000, 50.3415,
          0.7187,  0.0000,  0.0000,  0.0000, 19.5300,  0.0000, 12.6171,  0.0000,
          0.0000, 40.4328, 63.1309, 25.9717,  9.9090,  0.0000,  0.0000,  7.4069,
          0.0000,  0.0000,  0.0000, 48.7994, 22.2934,  8.2384,  0.0000,  0.0000,
         16.6730,  0.0000, 21.5223, 36.6605, 37.9476,  0.0000,  0.0000, 30.9383,
          0.0000,  5.8143, 30.3140, 31.1911, 45.5149,  0.0000,  0.0000,  0.0000,
          0.0000,  0.0000,  0.0000, 57.5292, 21.0106,  0.0000,  0.0000, 11.2866,
          0.0000,  8.8533,  0.0000,  0.0000, 16.1030,  0.0000, 31.2619,  5.7975,
         12.3731, 14.3904,  0.0000,  0.0000,  0.0000,  0.0000,  1.4914,  0.0000,
          0.0000, 16.2442,  0.0000, 39.2010, 43.2472,  0.0000,  0.0000,  0.0000,
          0.0000,  8.3958,  0.0000, 13.6056,  0.0000,  0.0000, 86.4618, 31.2490,
          0.0000,  0.0000,  2.6972,  0.0000,  0.0000, 26.5139,  0.0000, 23.3579,
          0.0000,  0.0000,  0.0000, 10.0080,  0.0000,  0.0000,  0.0000, 15.1532,
          3.9325, 35.7198,  0.0000,  0.0000,  0.0000, 21.8514,  0.8783,  0.0000,
          0.0000, 11.6154,  0.0000, 32.9982,  4.7520, 28.7346,  0.0000,  0.0000,
         31.4094,  0.0000,  3.6026, 32.6338,  0.3227,  0.0000,  0.3136,  0.0000,
          0.0000,  9.4382,  0.0000,  0.0000, 17.7246,  0.0000, 23.2691,  0.0000,
         27.7171, 14.8556, 58.0410,  0.0000,  7.1684,  4.9152,  0.0000, 35.3398,
         26.2738,  0.0000, 25.8247,  0.0000,  0.0000,  0.0000,  0.0000, 25.2728,
         35.7325,  7.9791, 42.1267, 38.2015, 13.0649,  7.1808, 16.6197,  0.0000,
         25.6002,  0.2276,  0.0000, 28.3883, 11.9394, 41.1464, 11.5944,  0.0000,
          0.0000,  0.0000, 23.2719, 16.6102, 38.2222, 32.7788, 15.7401, 58.2293,
          1.6106,  0.0000,  0.0000, 35.0814,  0.0000,  0.0000,  3.4356,  0.0000,
          0.0000,  0.0000,  0.0000,  0.0000, 45.6004, 14.8991,  6.0531, 51.6026,
         16.8593,  0.0000,  0.0000,  0.0000, 55.9559,  0.0000,  0.0000, 36.4741,
         21.1376,  6.3189, 19.6905,  0.0000,  4.5537, 18.8644, 37.8007,  2.9587,
          0.0000,  0.0000, 66.9925,  2.1472,  0.0000, 49.2316,  0.0000, 41.7871,
         44.0987,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000, 36.4081,  0.0000,
          0.0000, 40.1042,  0.0000,  0.0000,  0.0000,  6.7286, 18.3722, 27.6182,
          0.0000, 67.7467,  9.7763, 18.0995,  8.0758,  7.9573,  0.0000,  0.0000,
          0.0000,  0.0000,  0.0000,  7.1732,  0.0000, 10.2361,  6.5490, 27.3207,
         95.2971, 17.5390, 43.5235,  0.0000,  0.0000,  0.0000, 27.7248,  0.0000,
         11.7532,  0.0000, 24.5198, 62.1982,  4.9184,  0.0000,  0.0000, 12.8589,
          0.0000,  0.0000,  0.0000,  3.4953, 50.0316, 22.7615,  0.0000,  0.7946,
          5.9959, 27.8512,  0.0000, 17.3078, 11.5306,  0.0000, 10.6378, 10.7233,
          0.0000,  4.2215, 20.2768,  0.0000,  0.0000,  0.0000,  0.0000, 30.5890,
         22.3280,  0.0000, 41.7865,  9.4994,  0.0000,  0.0000,  0.0000, 21.8536,
          0.0000, 12.1628, 26.2739,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000,
          0.0000,  0.0000, 15.3123, 32.7893,  0.0000,  0.0000, 13.0238,  0.0000,
          0.0000, 73.2508,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000,
         17.9185,  0.0000,  0.0000,  0.0000,  0.0000, 21.6723,  0.0000, 56.8059,
         21.3461,  0.0000,  3.5318, 42.6378,  0.0000,  0.0000,  8.7609,  9.1071,
         19.7198, 29.4656, 12.3245,  0.0000,  0.0000,  6.2201,  0.0000,  0.0000,
          0.0000, 17.2576,  0.0000,  5.4993,  0.0000, 22.0809, 42.4508,  7.6554,
          0.0000, 14.8032,  8.5307, 17.6682,  0.0000,  4.4538,  3.2548, 31.2332,
          0.0000,  0.0000,  0.0000, 53.7162, 17.6550, 13.2346,  0.0000, 10.2985,
         11.6230,  0.0000, 45.5657,  7.3497,  0.0000,  1.8219,  0.0000, 70.1144,
          0.0000,  0.0000, 35.7366, 30.5250,  0.0000, 51.1208, 26.5028, 16.8218,
         28.1218,  0.0000, 36.6832, 12.0090,  0.7716,  0.0000,  0.0000,  0.0000,
          0.0000,  0.0000,  8.5589,  0.0000, 33.9515, 27.2925,  0.7363, 64.0930,
         50.3558, 54.7302, 62.5942,  0.0000,  0.0000,  1.9293,  0.0000, 25.3646,
          4.8337,  0.0000, 20.5091,  0.0000, 56.1850,  0.9221, 19.4342,  0.0000,
         66.2355,  0.0000,  0.0000,  0.0000,  0.0000,  7.8311,  0.0000,  0.0000,
         70.5462,  0.0000,  0.0000,  0.0000, 15.6784, 31.4369,  0.0000, 14.5324]],
       device='cuda:0', grad_fn=<ReluBackward0>)
Layer #2 
tensor([[17.1249,  0.0000,  0.0000,  9.0818,  6.6402,  0.0000, 10.8230,  0.0000,
          0.0000,  0.0000, 19.1912,  0.0000,  5.1139, 22.4080,  0.0000,  0.0000,
          0.0000,  0.0000,  0.0000, 11.7231,  8.7982, 13.2230,  6.9078,  0.0000,
          0.0000,  0.0000,  3.2706,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000,
          0.0000, 15.7249,  7.4991,  0.0000,  0.0000,  9.1082,  7.6445,  9.3315,
          1.8748,  0.0000,  7.9360,  0.0000,  0.0000,  0.0000,  0.0000, 17.4604,
         11.8764,  6.1336,  0.0000,  9.5193,  0.0000,  0.0000,  0.0000,  0.0000,
         22.4725,  0.0000,  0.0000,  0.0000, 17.5471,  0.0000,  8.5708, 11.9288,
          7.7524,  0.0000,  0.0000,  4.8687,  6.4660, 13.4811,  6.5080,  5.4127,
          0.0000,  0.0000,  0.0000,  0.0000, 19.6467,  0.0000,  0.0000, 26.5991,
          0.0000,  0.0000,  0.0000,  1.4286, 22.5212,  0.0000,  2.9779, 12.6172,
         17.1694,  0.0000,  0.0000,  0.0000,  0.0000,  3.8671,  8.2908,  0.0000,
          0.0000,  5.3878,  0.0000,  0.0000,  2.6435,  0.0000,  0.0000,  0.0000,
         31.1878, 16.2891,  3.2600,  0.6124,  0.0000, 15.0056,  0.0000,  0.0000,
          0.0000, 19.2099,  4.1495,  4.1315,  0.0514, 13.5338,  1.0504,  0.0000,
          0.0000,  0.0000,  0.0000, 11.8101,  0.0000,  0.0000,  0.0000, 13.4565,
         17.4728,  0.0000, 10.1245, 11.5265, 18.2403,  2.5224, 25.3509,  0.0000,
         11.8381,  0.0000,  0.0000,  2.9400,  0.0000, 23.7288,  5.2541,  0.0000,
          0.0000, 12.0983, 12.3099, 15.6219,  0.0000,  4.6333,  2.1624,  2.1363,
          2.8176,  3.7855,  0.0000, 10.6023, 28.2926,  7.8620,  0.0000,  0.0000,
          0.0000, 15.7391,  0.0000, 10.9450,  0.0000, 11.1348, 16.8085, 20.6935,
          0.0000,  0.0000,  0.0000, 11.9673,  0.0000, 10.4149,  0.0000,  0.0000,
          0.0000,  0.0000,  0.5347,  0.0000, 13.8853,  0.0000,  0.0000, 23.8881,
          5.6834,  0.0000, 14.2632, 15.1108,  0.0000,  0.0000,  0.0000, 12.5634,
         12.2963,  0.9804,  0.0000, 18.2825, 10.9668,  8.7040,  0.1205,  8.8042,
         11.9092,  5.7311, 12.1467,  0.0000,  0.0000,  9.8295,  5.2199,  0.0000,
          0.0000,  0.0000,  0.0000,  0.0000,  4.1317,  6.3019, 27.4451,  0.0000,
         19.1557,  0.0000, 11.3723, 13.3361,  6.6892,  0.0000,  0.0000,  1.9528,
          0.0000,  4.0795,  0.0000,  0.0000,  0.0000,  3.5099,  0.0000,  0.0000,
          0.0000, 16.9386,  0.0000,  0.0000,  7.6447,  0.0000,  0.0000,  0.0000,
          0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  4.5518,  0.0000,  1.5412,
          0.0000,  0.0000,  0.0000,  1.8520,  0.0000,  0.0000,  0.0000,  1.8567,
          0.0000, 12.5432, 17.2627, 12.1782,  0.0000,  0.0000,  6.6105,  2.9548,
          5.1203,  0.0000,  0.6381,  8.4258,  0.0000,  0.0000, 16.4389, 19.8055,
          3.1554,  0.0000,  0.0000,  0.0000, 13.3941,  0.0000,  4.2483,  1.6484,
          0.0000,  0.0000,  0.0000,  1.0757,  0.0000, 12.4581, 16.7086, 14.6670,
         11.1585,  6.4158,  0.0000, 16.0432,  1.8949, 12.8711,  0.0000,  0.0000,
          0.0000,  1.9205,  0.0000, 16.2584,  8.1967,  4.1390,  5.6682,  0.0000,
          1.7621,  0.0000,  0.0000,  8.2641,  0.0000,  0.0000,  0.0000,  5.4671,
          9.1355,  0.0000, 23.0471,  0.0000, 14.0210,  0.0000,  3.1476,  0.0000,
          0.0000,  0.0000,  0.0000,  7.4607, 23.0116, 15.9541,  0.0000,  0.0000,
          2.8278,  8.5759, 10.3721,  0.0000, 17.0605, 31.8535,  6.9635,  0.0000,
          8.3336, 10.9779,  2.8000,  0.0000,  0.0000,  0.0000,  0.0000, 26.5629,
          0.0000,  2.4045,  0.0000,  0.0000,  0.5652,  0.0000, 13.7610,  9.7107,
          5.7010,  0.0000,  0.0000, 11.1692,  0.0000,  0.0000,  4.8460, 13.3004,
          0.0542,  4.6617,  0.4143,  0.0000,  0.0000, 15.8988,  0.0000,  0.0000,
          0.0000,  0.0000,  0.0000, 14.1985,  0.0000,  0.0000, 12.7816, 21.5568,
          4.8282,  3.6445,  6.9795,  7.4458,  0.0000,  0.0000,  0.0000,  0.0000,
          0.0000, 12.9888, 16.1650, 10.7322, 12.3018,  0.0000,  0.0000,  7.6508,
          0.0000, 11.0397,  0.0000,  0.0000,  9.9304,  0.0000, 14.4211, 13.6603,
          7.4515,  0.0000,  0.0000,  8.8561,  0.0000, 10.5816,  0.0000, 13.6793,
          8.5912, 19.0544, 29.1780,  0.0000,  0.0000, 10.9369,  0.0000,  0.0000,
          6.0852,  0.3852,  1.5841,  0.0000,  0.0000, 12.2816, 13.9922,  9.5033,
          0.0000,  0.0000,  1.7762, 21.8631, 13.5751,  3.1538,  5.9521,  9.8035,
          2.2409,  0.0000,  7.9797,  0.0000, 11.7742,  0.0000,  0.0000,  0.0000,
         14.5848, 17.5528,  8.7062,  0.0000,  0.0000,  0.0000,  0.0000,  2.5330,
          0.0000,  3.4727,  1.3243,  1.6350,  0.0000,  2.3310, 16.4998,  9.0668,
          0.0000,  2.4043,  0.0000, 13.6607, 16.5940,  0.0000,  7.8046,  0.0000,
         20.6234, 10.3480,  0.0000, 16.7120,  0.0000, 11.0978,  4.4286,  0.0000,
          4.2564,  5.7708,  0.0000,  0.0000,  0.0000, 12.9946, 24.6138,  5.6800,
         34.5168,  1.7719, 17.0013, 13.6552,  0.0000,  0.0000,  5.6398, 10.8171,
          8.4392,  0.0000,  7.2894,  3.4434,  2.5727, 16.9701, 16.1560,  0.0000,
          0.0000, 13.8336,  0.0000,  0.0000,  0.0000, 18.6943,  0.1918,  1.5877,
          0.0000,  6.1855,  5.8500,  0.8094, 10.7234,  0.0000,  4.7110,  4.7390]],
       device='cuda:0', grad_fn=<ReluBackward0>)
Layer #3 
tensor([[1.6433, 1.1880, 1.4009, 0.0000, 4.4047, 4.4773]], device='cuda:0',
       grad_fn=<ReluBackward0>)
There is very little difference between the outputs of Layer #3 from successive batches.
I have also played around with LR and number of weights in the FC layers. The loss magnitude usually increases, with the shape mostly being the same (but never decreasing :().
Let me know if any other information is needed…Any help is appreciated:)!

