Hi,

I am trying to optimize the inputs in some required task and I don’t want to update my network as its freezed. I have written a minimal example but its not working as z has the same value in all iterations. I am sure that I am doing some silly mistake in this process. Any guidance is highly appreciated.

thanks.

```
import torch
z = torch.rand((1,6))
z.requires_grad_(True)
optimizer = torch.optim.SGD([z], lr= 0.1)
criteria = torch.nn.MSELoss()
for i in range(10):
optimizer.zero_grad()
print(z)
loss = criteria(z, z+torch.rand(1))
#print(loss)
loss.backward()
optimizer.step()
##output
tensor([[0.1105, 0.8152, 0.2820, 0.1122, 0.6645, 0.7211]], requires_grad=True)
tensor([[0.1105, 0.8152, 0.2820, 0.1122, 0.6645, 0.7211]], requires_grad=True)
tensor([[0.1105, 0.8152, 0.2820, 0.1122, 0.6645, 0.7211]], requires_grad=True)
tensor([[0.1105, 0.8152, 0.2820, 0.1122, 0.6645, 0.7211]], requires_grad=True)
tensor([[0.1105, 0.8152, 0.2820, 0.1122, 0.6645, 0.7211]], requires_grad=True)
tensor([[0.1105, 0.8152, 0.2820, 0.1122, 0.6645, 0.7211]], requires_grad=True)
tensor([[0.1105, 0.8152, 0.2820, 0.1122, 0.6645, 0.7211]], requires_grad=True)
tensor([[0.1105, 0.8152, 0.2820, 0.1122, 0.6645, 0.7211]], requires_grad=True)
tensor([[0.1105, 0.8152, 0.2820, 0.1122, 0.6645, 0.7211]], requires_grad=True)
tensor([[0.1105, 0.8152, 0.2820, 0.1122, 0.6645, 0.7211]], requires_grad=True)
```