**[in Pytorch]**

```
fc1 = Sequential (
(0): Linear (147 -> 1000)
(1): BatchNorm1d(1000, eps=1e-05, momentum=0.1, affine=True)
(2): LeakyReLU (0.2, inplace)
)
conv1 = Sequential (
(0): Conv1d(100, 250, kernel_size=(13,), stride=(1,), padding=(6,))
(1): BatchNorm1d(250, eps=1e-05, momentum=0.1, affine=True)
(2): LeakyReLU (0.2, inplace)
)
a = Variable(torch.randn(10, 147))
b = fc1(a)
b.size()
Out[71]: torch.Size([10, 1000])
torch.Size([10, 1000])
b = b.view(10,100,10)
c = conv1(b)
c.size()
Out[75]: torch.Size([10, 250, 10])
```

**In Keras**

```
x = Input(shape=(147,),name="input")
In [78]: x
Out[78]: <tf.Tensor 'input:0' shape=(?, 147) dtype=float32>
x = Dense(10 * 100)(x)
x = BatchNormalization()(x)
x = LeakyReLU(0.2)(x) # output shape is 10*100
x = Reshape((100, 10))(x) # shape is 100 x 10
x = Conv1D(filters=250, kernel_size=13, padding='same')(x)
x
Out[80]: <tf.Tensor 'conv1d_4/add:0' shape=(?, 100, 250) dtype=float32>
```

The question is the output after applying the pytorch conv1d is (?, 250, 10) where as the keras output is (?, 100, 250)

Could you tell me why they are different and how to write conv1d in pytorch to match with keras conv1d.

Thanks,