def conv3x3(in_planes, out_planes, stride=1):
return nn.Conv2d(in_planes, out_planes, kernel_size=3,
stride=stride, padding=1, bias=False)
def conv1x1(in_planes, planes, stride=1):
return nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride, bias=False)
def branchBottleNeck(channel_in, channel_out, kernel_size):
middle_channel = channel_out//4
return nn.Sequential(
nn.Conv2d(channel_in, middle_channel, kernel_size=1, stride=1),
nn.BatchNorm2d(middle_channel),
nn.ReLU(),
nn.Conv2d(middle_channel, middle_channel, kernel_size=kernel_size, stride=kernel_size),
nn.BatchNorm2d(middle_channel),
nn.ReLU(),
nn.Conv2d(middle_channel, channel_out, kernel_size=1, stride=1),
nn.BatchNorm2d(channel_out),
nn.ReLU(),
)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
output = self.conv1(x)
output = self.bn1(output)
output = self.relu(output)
output = self.conv2(output)
output = self.bn2(output)
if self.downsample is not None:
residual = self.downsample(x)
output += residual
output = self.relu(output)
return output
class BottleneckBlock(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BottleneckBlock, self).__init__()
self.conv1 = conv1x1(inplanes, planes)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes, stride)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = conv1x1(planes, planes*self.expansion)
self.bn3 = nn.BatchNorm2d(planes*self.expansion)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
output = self.conv1(x)
output = self.bn1(output)
output = self.relu(output)
output = self.conv2(output)
output = self.bn2(output)
output = self.relu(output)
output = self.conv3(output)
output = self.bn3(output)
if self.downsample is not None:
residual = self.downsample(x)
output += residual
output = self.relu(output)
return output
class Multi_ResNet(nn.Module):
def __init__(self, block, layers, first_channel=3, num_classes=1000):
super(Multi_ResNet, self).__init__()
self.inplanes = 64
self.conv1 = nn.Conv2d(first_channel, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(self.inplanes)
self.relu = nn.ReLU(inplace=True)
# self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.downsample1_1 = nn.Sequential(
conv1x1(64 * block.expansion, 512 * block.expansion, stride=8),
nn.BatchNorm2d(512 * block.expansion),
)
self.bottleneck1_1 = branchBottleNeck(64 * block.expansion, 512 * block.expansion, kernel_size=8)
self.avgpool1 = nn.AdaptiveAvgPool2d((1,1))
self.middle_fc1 = nn.Linear(512 * block.expansion, num_classes)
self.downsample2_1 = nn.Sequential(
conv1x1(128 * block.expansion, 512 * block.expansion, stride=4),
nn.BatchNorm2d(512 * block.expansion),
)
self.bottleneck2_1 = branchBottleNeck(128 * block.expansion, 512 * block.expansion, kernel_size=4)
self.avgpool2 = nn.AdaptiveAvgPool2d((1,1))
self.middle_fc2 = nn.Linear(512 * block.expansion, num_classes)
self.downsample3_1 = nn.Sequential(
conv1x1(256 * block.expansion, 512 * block.expansion, stride=2),
nn.BatchNorm2d(512 * block.expansion),
)
self.bottleneck3_1 = branchBottleNeck(256 * block.expansion, 512 * block.expansion, kernel_size=2)
self.avgpool3 = nn.AdaptiveAvgPool2d((1,1))
self.middle_fc3 = nn.Linear(512 * block.expansion, num_classes)
self.avgpool = nn.AdaptiveAvgPool2d((1,1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def _make_layer(self, block, planes, layers, stride=1):
downsample = None
if stride !=1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
nn.BatchNorm2d(planes * block.expansion),
)
layer = []
layer.append(block(self.inplanes, planes, stride=stride, downsample=downsample))
self.inplanes = planes * block.expansion
for i in range(1, layers):
layer.append(block(self.inplanes, planes))
return nn.Sequential(*layer)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x)
return x
def multi_resnet18_kd(first_channel=3, num_classes=1000):
return Multi_ResNet(BasicBlock, [2,2,2,2], first_channel=first_channel, num_classes=num_classes)