Hi:
I’m newbie. I get a Type Error when I use tensorboard in pytorch . Here is my code:
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer("pe", pe)
def forward(self, x):
x = x + self.pe[:x.size(0), :]
return self.dropout(x)
class TransformerModel(nn.Module):
def __init__(self, ntoken, ninp, nhead, nhid, nlayers, dropout=0.5):
super(TransformerModel, self).__init__()
from torch.nn.modules.transformer import TransformerEncoder, TransformerEncoderLayer
# from torch.nn import TransformerEncoder, TransformerEncoderLayer
self.model_type = "Transformer"
self.src_mask = None
self.pos_encoder = PositionalEncoding(ninp, dropout)
print(f"pos encoder type is {type(self.pos_encoder)},")
encoder_layers = TransformerEncoderLayer(d_model=ninp, nhead=nhead, dim_feedforward=nhid, dropout=dropout)
self.transformer_encoder = TransformerEncoder(encoder_layer=encoder_layers, num_layers=nlayers)
self.encoder = nn.Embedding(num_embeddings=ntoken, embedding_dim=ninp)
self.ninp = ninp
self.decoder = nn.Linear(ninp, ntoken)
self.init_weights()
def _generate_square_subsequent_mask(self, sz):
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
return mask
def init_weights(self):
initrange = 0.1
self.encoder.weight.data.uniform_(-initrange, initrange)
self.decoder.bias.data.zero_()
self.decoder.weight.data.uniform_(-initrange, initrange)
def forward(self, src):
if self.src_mask is None or self.src_mask.size(0) != len(src):
device = src.device
mask = self._generate_square_subsequent_mask(len(src)).to(device)
self.src_mask = mask
src = self.encoder(src) * math.sqrt(self.ninp)
src = self.pos_encoder(src)
output = self.transformer_encoder(src, self.src_mask)
output = self.decoder(output)
return output
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device = torch.device("cpu")
embedding_size = 200
nhid = 200
nlayers = 2
nhead = 2
dropout = 0.2
model = TransformerModel(ntokens, embedding_size, nhead, nhid, nlayers, dropout).to(device)
writer = SummaryWriter()
writer.add_graph(model)
The seq2seq code is from [https://pytorch.org/tutorials/beginner/transformer_tutorial.html]. why I get Type Error when add_graph(model). this is my error
TypeError: 'NoneType' object is not iterable
some traceback:
writer.add_graph(model)
self._get_file_writer().add_graph(graph(model, input_to_model, verbose))
trace = torch.jit.trace(model, args)
check_tolerance, _force_outplace, _module_class)
example_inputs = make_tuple(example_inputs)
return tuple(example_inputs)
TypeError: 'NoneType' object is not iterable