Hi,
I had rebuild libtorch C++ library(v1.0.1) based on /tools/build_libtorch.py file, unfortunately they are slower than official version.
The following is my configuration output. Are there any tricks? Thanks your enthusiasm.
Hi,
I had rebuild libtorch C++ library(v1.0.1) based on /tools/build_libtorch.py file, unfortunately they are slower than official version.
The following is my configuration output. Are there any tricks? Thanks your enthusiasm.
Have you found out the reason?
I installed pytorch from source on win10, however the speed of loading model and predicting, libtorch is 3 times slower than that of caffe. I donβt know why. Iβm much confused!
β TORCH_VERSION : 1.1.0
β CAFFE2_VERSION : 1.1.0
β BUILD_ATEN_MOBILE : OFF
β BUILD_ATEN_ONLY : OFF
β BUILD_BINARY : False
β BUILD_CUSTOM_PROTOBUF : ON
β Link local protobuf : ON
β BUILD_DOCS : OFF
β BUILD_PYTHON : True
β Python version : 3.6.6
β Python executable : C:/Users/qjhs/AppData/Local/Programs/Python/Python36/python.exe
β Pythonlibs version : 3.6.6
β Python library : C:/Users/qjhs/AppData/Local/Programs/Python/Python36/libs/python36.lib
β Python includes : C:/Users/qjhs/AppData/Local/Programs/Python/Python36/include
β Python site-packages: Lib/site-packages
β BUILD_CAFFE2_OPS : True
β BUILD_SHARED_LIBS : ON
β BUILD_TEST : True
β USE_ASAN : OFF
β USE_CUDA : True
β CUDA static link : False
β USE_CUDNN : ON
β CUDA version : 10.0
β cuDNN version : 7.5.0
β CUDA root directory : C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v10.0
β CUDA library : C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v10.0/lib/x64/cuda.lib
β cudart library : C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v10.0/lib/x64/cudart.lib
β cublas library : C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v10.0/lib/x64/cublas.lib
β cufft library : C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v10.0/lib/x64/cufft.lib
β curand library : C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v10.0/lib/x64/curand.lib
β cuDNN library : C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v10.0/lib/x64/cudnn.lib
β nvrtc : C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v10.0/lib/x64/nvrtc.lib
β CUDA include path : C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v10.0/include
β NVCC executable : C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v10.0/bin/nvcc.exe
β CUDA host compiler : F:/ProgramFiles/VS2017L/VC/Tools/MSVC/14.11.25503/bin/HostX64/x64/cl.exe
β USE_TENSORRT : OFF
β USE_ROCM : False
β USE_EIGEN_FOR_BLAS :
β USE_FBGEMM : OFF
β USE_FFMPEG : False
β USE_GFLAGS : OFF
β USE_GLOG : OFF
β USE_LEVELDB : False
β USE_LITE_PROTO : OFF
β USE_LMDB : False
β USE_METAL : OFF
β USE_MKL : ON
β USE_MKLDNN : OFF
β USE_NCCL : False
β USE_NNPACK : OFF
β USE_NUMPY : ON
β USE_OBSERVERS : ON
β USE_OPENCL : OFF
β USE_OPENCV : False
β USE_OPENMP : ON
β USE_PROF : OFF
β USE_QNNPACK : OFF
β USE_REDIS : OFF
β USE_ROCKSDB : OFF
β USE_ZMQ : OFF
β USE_DISTRIBUTED : False