Resnet inconsistency between train and eval mode

I’m trying to implement the Resnet in torch. But I found the output of the forward pass varies greatly between train and eval mode. Since the train and eval mode doesn’t affect anything besides batch norm and dropout, I don’t know if the results make sense.

Below is my test code:

import torch
from torch import nn
from torchvision import models

class resnet_lstm(torch.nn.Module):
    def __init__(self):
        super(resnet_lstm, self).__init__()
        resnet = models.resnet50(pretrained=True)
        self.share = torch.nn.Sequential()
        self.share.add_module("conv1", resnet.conv1)
        self.share.add_module("bn1", resnet.bn1)  # Use BatchNorm3d
        self.share.add_module("relu", resnet.relu)
        self.share.add_module("maxpool", resnet.maxpool)
        self.share.add_module("layer1", resnet.layer1)
        self.share.add_module("layer2", resnet.layer2)
        self.share.add_module("layer3", resnet.layer3)
        self.share.add_module("layer4", resnet.layer4)
        self.share.add_module("avgpool", resnet.avgpool)
        self.fc = nn.Sequential(nn.Linear(2048, 512),
                                nn.ReLU(),
                                nn.Linear(512, 7))

    def forward(self, x):
        x = x.view(-1, 3, 224, 224)
        x = self.share(x)
        return x
    
model = resnet_lstm()

input_ = torch.randn(1, 3, 224, 224)
model.train()
print("train mode output", model(input_))
model.eval()
print("eval mode output", model(input_))

Terminal output:

train mode output tensor([[[[0.3603]],

         [[0.5518]],

         [[0.4599]],

         ...,

         [[0.3381]],

         [[0.4445]],

         [[0.3481]]]], grad_fn=<MeanBackward1>)
eval mode output tensor([[[[0.1582]],

         [[0.1822]],

         [[0.0000]],

         ...,

         [[0.0567]],

         [[0.0054]],

         [[0.3605]]]], grad_fn=<MeanBackward1>)

As you can see, the output of the train and eval mode is very different from each other. Would this damage the performance?