How can I plot ROC curves for this simple example? I tried sklearn but ran into this error. Is there any PyTorch function to do this?
Error
IndexError: too many indices for array: array is 1-dimensional, but 2 were indexed
I tried something like this
# https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html
y_test = test_y
y_score = predict_y
n_classes = 3
# Compute ROC curve and ROC area for each class
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(n_classes):
fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])
# Compute micro-average ROC curve and ROC area
fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_score.ravel())
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])
# First aggregate all false positive rates
all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)]))
# Then interpolate all ROC curves at this points
mean_tpr = np.zeros_like(all_fpr)
for i in range(n_classes):
mean_tpr += interp(all_fpr, fpr[i], tpr[i])
# Finally average it and compute AUC
mean_tpr /= n_classes
fpr["macro"] = all_fpr
tpr["macro"] = mean_tpr
roc_auc["macro"] = auc(fpr["macro"], tpr["macro"])
# Plot all ROC curves
plt.figure()
plt.plot(fpr["micro"], tpr["micro"],
label='micro-average ROC curve (area = {0:0.2f})'
''.format(roc_auc["micro"]),
color='deeppink', linestyle=':', linewidth=4)
plt.plot(fpr["macro"], tpr["macro"],
label='macro-average ROC curve (area = {0:0.2f})'
''.format(roc_auc["macro"]),
color='navy', linestyle=':', linewidth=4)
colors = cycle(['aqua', 'darkorange', 'cornflowerblue'])
for i, color in zip(range(n_classes), colors):
plt.plot(fpr[i], tpr[i], color=color, lw=lw,
label='ROC curve of class {0} (area = {1:0.2f})'
''.format(i, roc_auc[i]))
plt.plot([0, 1], [0, 1], 'k--', lw=lw)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Some extension of Receiver operating characteristic to multi-class')
plt.legend(loc="lower right")
plt.show()
Main code
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, precision_score, recall_score
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torch.utils.data import TensorDataset, DataLoader
class Net(nn.Module):
# define nn
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(4, 100)
self.fc2 = nn.Linear(100, 100)
self.fc3 = nn.Linear(100, 3)
self.softmax = nn.Softmax(dim=1)
def forward(self, X):
X = F.relu(self.fc1(X))
X = self.fc2(X)
X = self.fc3(X)
X = self.softmax(X)
return X
# load IRIS dataset
dataset = pd.read_csv('https://raw.githubusercontent.com/yangzhangalmo/pytorch-iris/master/dataset/iris.csv')
# transform species to numerics
dataset.loc[dataset.species=='Iris-setosa', 'species'] = 0
dataset.loc[dataset.species=='Iris-versicolor', 'species'] = 1
dataset.loc[dataset.species=='Iris-virginica', 'species'] = 2
train_X, test_X, train_y, test_y = train_test_split(dataset[dataset.columns[0:4]].values,
dataset.species.values, test_size=0.8)
train_X = np.float32(train_X)
test_X = np.float32(test_X)
train_y = np.int64(train_y)
test_y = np.int64(test_y)
train_dataset = TensorDataset(torch.Tensor(train_X), torch.Tensor(train_y))
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
net = Net()
criterion = nn.CrossEntropyLoss()# cross entropy loss
optimizer = torch.optim.SGD(net.parameters(), lr=0.01)
net.train()
for epoch in range(1000):
for inputs, targets in train_loader:
optimizer.zero_grad()
out = net(inputs)
loss = criterion(out, targets.long())
loss.backward()
optimizer.step()
if epoch % 100 == 0:
print('number of epoch', epoch, 'loss', loss.item())
predict_out = net(torch.Tensor(test_X))
_, predict_y = torch.max(predict_out, 1)
print('prediction accuracy', accuracy_score(test_y.data, predict_y.data))
print('macro precision', precision_score(test_y.data, predict_y.data, average='macro'))
print('micro precision', precision_score(test_y.data, predict_y.data, average='micro'))
print('macro recall', recall_score(test_y.data, predict_y.data, average='macro'))
print('micro recall', recall_score(test_y.data, predict_y.data, average='micro'))