ROC curves for a simple CNN multi-class model

How can I plot ROC curves for this simple example? I tried sklearn but ran into this error. Is there any PyTorch function to do this?

Error

IndexError: too many indices for array: array is 1-dimensional, but 2 were indexed

I tried something like this

# https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html
  
y_test = test_y
y_score = predict_y

n_classes = 3

# Compute ROC curve and ROC area for each class
fpr = dict()
tpr = dict()
roc_auc = dict()

for i in range(n_classes):
    fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i])
    roc_auc[i] = auc(fpr[i], tpr[i])

# Compute micro-average ROC curve and ROC area
fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_score.ravel())
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])



# First aggregate all false positive rates
all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)]))

# Then interpolate all ROC curves at this points
mean_tpr = np.zeros_like(all_fpr)
for i in range(n_classes):
    mean_tpr += interp(all_fpr, fpr[i], tpr[i])

# Finally average it and compute AUC
mean_tpr /= n_classes

fpr["macro"] = all_fpr
tpr["macro"] = mean_tpr
roc_auc["macro"] = auc(fpr["macro"], tpr["macro"])

# Plot all ROC curves
plt.figure()
plt.plot(fpr["micro"], tpr["micro"],
         label='micro-average ROC curve (area = {0:0.2f})'
               ''.format(roc_auc["micro"]),
         color='deeppink', linestyle=':', linewidth=4)

plt.plot(fpr["macro"], tpr["macro"],
         label='macro-average ROC curve (area = {0:0.2f})'
               ''.format(roc_auc["macro"]),
         color='navy', linestyle=':', linewidth=4)

colors = cycle(['aqua', 'darkorange', 'cornflowerblue'])
for i, color in zip(range(n_classes), colors):
    plt.plot(fpr[i], tpr[i], color=color, lw=lw,
             label='ROC curve of class {0} (area = {1:0.2f})'
             ''.format(i, roc_auc[i]))

plt.plot([0, 1], [0, 1], 'k--', lw=lw)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Some extension of Receiver operating characteristic to multi-class')
plt.legend(loc="lower right")
plt.show() 

Main code

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, precision_score, recall_score

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torch.utils.data import TensorDataset, DataLoader

class Net(nn.Module):
    # define nn
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(4, 100)
        self.fc2 = nn.Linear(100, 100)
        self.fc3 = nn.Linear(100, 3)
        self.softmax = nn.Softmax(dim=1)

    def forward(self, X):
        X = F.relu(self.fc1(X))
        X = self.fc2(X)
        X = self.fc3(X)
        X = self.softmax(X)

        return X
    
# load IRIS dataset
dataset = pd.read_csv('https://raw.githubusercontent.com/yangzhangalmo/pytorch-iris/master/dataset/iris.csv')

# transform species to numerics
dataset.loc[dataset.species=='Iris-setosa', 'species'] = 0
dataset.loc[dataset.species=='Iris-versicolor', 'species'] = 1
dataset.loc[dataset.species=='Iris-virginica', 'species'] = 2


train_X, test_X, train_y, test_y = train_test_split(dataset[dataset.columns[0:4]].values,
                                                    dataset.species.values, test_size=0.8)

train_X = np.float32(train_X)
test_X = np.float32(test_X)
train_y = np.int64(train_y)
test_y = np.int64(test_y)

train_dataset = TensorDataset(torch.Tensor(train_X), torch.Tensor(train_y))
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)

net = Net()

criterion = nn.CrossEntropyLoss()# cross entropy loss

optimizer = torch.optim.SGD(net.parameters(), lr=0.01)

net.train()

for epoch in range(1000):
    
    for inputs, targets in train_loader:
        optimizer.zero_grad()
        out = net(inputs)
        loss = criterion(out, targets.long())
        loss.backward()
        optimizer.step()

    if epoch % 100 == 0:
        print('number of epoch', epoch, 'loss', loss.item())

predict_out = net(torch.Tensor(test_X))
_, predict_y = torch.max(predict_out, 1)

print('prediction accuracy', accuracy_score(test_y.data, predict_y.data))

print('macro precision', precision_score(test_y.data, predict_y.data, average='macro'))
print('micro precision', precision_score(test_y.data, predict_y.data, average='micro'))
print('macro recall', recall_score(test_y.data, predict_y.data, average='macro'))
print('micro recall', recall_score(test_y.data, predict_y.data, average='micro'))

Based on the error message you are trying to index a tensor or numpy array in 2 dimensions, while the object has only a single one.
I would recommend to check the shapes of all tensors/arrays in the line of code which throws this error and fix the indexing. Maybe you are already slicing the object before and thus removing one dimension?

This worked but only for a single class.

# Compute ROC curve and ROC area for each class
test_y = y_test
y_pred = y_score

fpr, tpr, thresholds = metrics.roc_curve(y_test, y_score, pos_label=2)
roc_auc = auc(fpr, tpr)

plt.figure()
lw = 2
plt.plot(fpr, tpr, color='darkorange',
         lw=lw, label='ROC curve (area = %0.2f)' % roc_auc)
plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend(loc="lower right")
plt.show()

3 Likes