```
class Net(torch.nn.Module):
def __init__(self, filename, num_epochs, learning_rate = 1e-2):
super().__init__()
self.filename = filename
# reproducibility
torch.manual_seed(0)
self.input_neurons = 78
self.hidden_neurons = 54
self.output_neurons = 2
# learning rate
self.lr = learning_rate
# layers
self.hidden = torch.nn.Linear(self.input_neurons,self.hidden_neurons)
self.output = torch.nn.Linear(self.hidden_neurons, self.output_neurons)
# define sigmoid and softmax output
self.sigmoid = torch.nn.Sigmoid()
self.softmax = torch.nn.Softmax(dim = 1)
self.loss = torch.nn.MSELoss(reduction = 'mean')
def forward(self, x):
hidden_inputs = self.hidden(x)
hidden_outputs = self.sigmoid(hidden_inputs)
final_inputs = self.output(hidden_outputs)
final_outputs = self.softmax(final_inputs)
return final_outputs
def run_model(self):
self.preprocessing()
# create your optimizer
optimizer = torch.optim.SGD(self.parameters(), lr = self.lr)
accuracy = 0
for epoch in range(2):
torch.autograd.set_detect_anomaly(True)
optimizer.zero_grad()
label_predict = self.forward(self.features)
# two classes: Benign and DDos to 0 and 1 respectively
label_target = self.label_encode(self.labels_unique, self.labels)
label_predict_benign = label_predict[:,0]
for i,x in enumerate(label_predict_benign):
if label_predict_benign[i] > 0.5:
label_predict_benign[i] = 0 # BENIGN
else:
label_predict_benign[i] = 1 # DDOS
# print(label_predict_benign)
print(label_predict_benign.shape, label_target.shape) # torch.size([227541]), torch.size([227541])
loss = self.loss(label_predict_benign.float(), label_target.float())
# Backward pass: compute gradient of the loss with respect to model
# parameters
loss.backward()
# Calling the step function on an Optimizer makes an update to its
# parameters
optimizer.step()
```

[torch.FloatTensor [225741, 2]], which is output 0 of SoftmaxBackward, is at version 225741; expected version 0 instead.

Everything works fine until the loss.backward() line.

I donâ€™t understand the error. Can someone please help, I tried to find the solution as much as I could but stuck at this point.