RuntimeError: An attempt has been made to start a new process before the current process has finished its bootstrapping phase

I am trying to run this code:GitHub - Jee-King/TSAN: A Two-Stage Attentive Network for Single Image Super-Resolution
As per my understanding, the code is written for both GPU and multithreading. As this code runs on GPU, it should use GPU environment. But it is running on multithreading. How to change it to run on GPU?
I got this runtime error:

rm: cannot remove ‘experiment/TSAN_X4/log.txt’: Device or resource busy
this name DIV2K
set filesystem dataset/DIV2K\HR dataset/DIV2K\LR_bicubic (’.png’, ‘.png’)
self.dir_hr dataset/DIV2K\DIV2K_train_HR
path join dataset/DIV2K\DIV2K_train_HR*.png
Making a new binary: dataset/DIV2K\bin\DIV2K_train_HR\0001.pt
Making a new binary: dataset/DIV2K\bin\DIV2K_train_HR\0002.pt
Making a new binary: dataset/DIV2K\bin\DIV2K_train_LR_bicubic\X4/0001x4.pt
Making a new binary: dataset/DIV2K\bin\DIV2K_train_LR_bicubic\X4/0002x4.pt
this name DIV2K
set filesystem dataset/DIV2K\HR dataset/DIV2K\LR_bicubic (’.png’, ‘.png’)
self.dir_hr dataset/DIV2K\DIV2K_train_HR
path join dataset/DIV2K\DIV2K_train_HR*.png
Making a new binary: dataset/DIV2K\bin\DIV2K_train_HR\0003.pt
Making a new binary: dataset/DIV2K\bin\DIV2K_train_HR\0004.pt
Making a new binary: dataset/DIV2K\bin\DIV2K_train_LR_bicubic\X4/0003x4.pt
Making a new binary: dataset/DIV2K\bin\DIV2K_train_LR_bicubic\X4/0004x4.pt
Making model…
Preparing loss function:
1.000 * L1
[Epoch 1] Learning rate: 1.00e-4
rm: cannot remove ‘experiment/TSAN_X4/log.txt’: Device or resource busy
rm: cannot remove ‘experiment/TSAN_X4/log.txt’: Device or resource busy
rm: cannot remove ‘experiment/TSAN_X4/log.txt’: Device or resource busy
this name DIV2K
set filesystem dataset/DIV2K\HR dataset/DIV2K\LR_bicubic (’.png’, ‘.png’)
self.dir_hr dataset/DIV2K\DIV2K_train_HR
path join dataset/DIV2K\DIV2K_train_HR*.png
Making a new binary: dataset/DIV2K\bin\DIV2K_train_HR\0001.pt
Traceback (most recent call last):
File “”, line 1, in
File “C:\Users\anaconda3\envs\TSAN\lib\multiprocessing\spawn.py”, line 105, in spawn_main
exitcode = _main(fd)
File “C:\Users\anaconda3\envs\TSAN\lib\multiprocessing\spawn.py”, line 114, in _main
prepare(preparation_data)
File “C:\Users\anaconda3\envs\TSAN\lib\multiprocessing\spawn.py”, line 225, in prepare
_fixup_main_from_path(data[‘init_main_from_path’])
File “C:\Users\anaconda3\envs\TSAN\lib\multiprocessing\spawn.py”, line 277, in _fixup_main_from_path
run_name=“mp_main”)
File “C:\Users\anaconda3\envs\TSAN\lib\runpy.py”, line 263, in run_path
Making a new binary: dataset/DIV2K\bin\DIV2K_train_HR\0002.pt
pkg_name=pkg_name, script_name=fname)
File “C:\Users\anaconda3\envs\TSAN\lib\runpy.py”, line 96, in _run_module_code
mod_name, mod_spec, pkg_name, script_name)
File “C:\Users\anaconda3\envs\TSAN\lib\runpy.py”, line 85, in _run_code
exec(code, run_globals)
File “E:\Deep_learning\TSAN\TSAN_patternnet_test\Train\main.py”, line 11, in
checkpoint = utility.checkpoint(args)
File “E:\Deep_learning\TSAN\TSAN_patternnet_test\Train\utility.py”, line 67, in init
_make_dir(self.dir + ‘/model’)
Making a new binary: dataset/DIV2K\bin\DIV2K_train_LR_bicubic\X4/0001x4.pt
File “E:\Deep_learning\TSAN\TSAN_patternnet_test\Train\utility.py”, line 64, in _make_dir
if not os.path.exists(path): os.makedirs(path)
File “C:\Users\anaconda3\envs\TSAN\lib\os.py”, line 220, in makedirs
Making a new binary: dataset/DIV2K\bin\DIV2K_train_LR_bicubic\X4/0002x4.pt
mkdir(name, mode)
this name DIV2K
FileExistsError: [WinError 183] Cannot create a file when that file already exists: ‘experiment/TSAN_X4/model’
set filesystem dataset/DIV2K\HR dataset/DIV2K\LR_bicubic (’.png’, ‘.png’)
self.dir_hr dataset/DIV2K\DIV2K_train_HR
path join dataset/DIV2K\DIV2K_train_HR*.png
Making a new binary: dataset/DIV2K\bin\DIV2K_train_HR\0003.pt
Making a new binary: dataset/DIV2K\bin\DIV2K_train_HR\0004.pt
Making a new binary: dataset/DIV2K\bin\DIV2K_train_LR_bicubic\X4/0003x4.pt
Making a new binary: dataset/DIV2K\bin\DIV2K_train_LR_bicubic\X4/0004x4.pt
Making model…
this name DIV2K
set filesystem dataset/DIV2K\HR dataset/DIV2K\LR_bicubic (’.png’, ‘.png’)
self.dir_hr dataset/DIV2K\DIV2K_train_HR
path join dataset/DIV2K\DIV2K_train_HR*.png
Making a new binary: dataset/DIV2K\bin\DIV2K_train_HR\0001.pt
Making a new binary: dataset/DIV2K\bin\DIV2K_train_HR\0002.pt
Making a new binary: dataset/DIV2K\bin\DIV2K_train_LR_bicubic\X4/0001x4.pt
Making a new binary: dataset/DIV2K\bin\DIV2K_train_LR_bicubic\X4/0002x4.pt
this name DIV2K
set filesystem dataset/DIV2K\HR dataset/DIV2K\LR_bicubic (’.png’, ‘.png’)
self.dir_hr dataset/DIV2K\DIV2K_train_HR
path join dataset/DIV2K\DIV2K_train_HR*.png
Making a new binary: dataset/DIV2K\bin\DIV2K_train_HR\0003.pt
Making a new binary: dataset/DIV2K\bin\DIV2K_train_HR\0004.pt
Making a new binary: dataset/DIV2K\bin\DIV2K_train_LR_bicubic\X4/0003x4.pt
Making a new binary: dataset/DIV2K\bin\DIV2K_train_LR_bicubic\X4/0004x4.pt
Making model…
Preparing loss function:
1.000 * L1
[Epoch 1] Learning rate: 1.00e-4
Traceback (most recent call last):
File “”, line 1, in
File “C:\Users\anaconda3\envs\TSAN\lib\multiprocessing\spawn.py”, line 105, in spawn_main
exitcode = _main(fd)
File “C:\Users\anaconda3\envs\TSAN\lib\multiprocessing\spawn.py”, line 114, in _main
prepare(preparation_data)
File “C:\Users\anaconda3\envs\TSAN\lib\multiprocessing\spawn.py”, line 225, in prepare
_fixup_main_from_path(data[‘init_main_from_path’])
File “C:\Users\anaconda3\envs\TSAN\lib\multiprocessing\spawn.py”, line 277, in _fixup_main_from_path
run_name=“mp_main”)
File “C:\Users\anaconda3\envs\TSAN\lib\runpy.py”, line 263, in run_path
pkg_name=pkg_name, script_name=fname)
File “C:\Users\anaconda3\envs\TSAN\lib\runpy.py”, line 96, in _run_module_code
mod_name, mod_spec, pkg_name, script_name)
File “C:\Users\anaconda3\envs\TSAN\lib\runpy.py”, line 85, in _run_code
exec(code, run_globals)
File “E:\Deep_learning\TSAN\TSAN_test\Train\main.py”, line 19, in
t.train()
File “E:\Deep_learning\TSAN\TSAN_test\Train\trainer.py”, line 46, in train
for batch, (lr, hr, _, idx_scale) in enumerate(self.loader_train):
File “E:\Deep_learning\TSAN\TSAN_test\Train\dataloader.py”, line 144, in iter
return _MSDataLoaderIter(self)
File “E:\Deep_learning\TSAN\TSAN_test\Train\dataloader.py”, line 117, in init
w.start()
File “C:\Users\anaconda3\envs\TSAN\lib\multiprocessing\process.py”, line 105, in start
self._popen = self._Popen(self)
File “C:\Users\anaconda3\envs\TSAN\lib\multiprocessing\context.py”, line 223, in _Popen
return _default_context.get_context().Process._Popen(process_obj)
File “C:\Users\anaconda3\envs\TSAN\lib\multiprocessing\context.py”, line 322, in _Popen
return Popen(process_obj)
File “C:\Users\anaconda3\envs\TSAN\lib\multiprocessing\popen_spawn_win32.py”, line 33, in init
prep_data = spawn.get_preparation_data(process_obj._name)
File “C:\Users\anaconda3\envs\TSAN\lib\multiprocessing\spawn.py”, line 143, in get_preparation_data
_check_not_importing_main()
File “C:\Users\anaconda3\envs\TSAN\lib\multiprocessing\spawn.py”, line 136, in _check_not_importing_main
is not going to be frozen to produce an executable.’’’)
RuntimeError:
An attempt has been made to start a new process before the
current process has finished its bootstrapping phase.

    This probably means that you are not using fork to start your
    child processes and you have forgotten to use the proper idiom
    in the main module:

        if __name__ == '__main__':
            freeze_support()
            ...

    The "freeze_support()" line can be omitted if the program
    is not going to be frozen to produce an executable.

Environment used for the code is:
Python 3.6
Pytorch 0.4 Cuda 9.0

1 Like

Did you add the if-clause protection as described in the error message by wrapping the code exection logic into the if __name__ == '__main__' guard?

5 Likes

No, which python file if name == ‘main’ needs to be added? @ptrblck

Your main script needs to add this guard as described here.

3 Likes

I tried to add this guard in “trainer.py” file. Still got the same error

Capture_1

@ptrblck Have you looked through the code GitHub - Jee-King/TSAN: A Two-Stage Attentive Network for Single Image Super-Resolution. You can see that the code could be run on either multithreading or GPU. My requirement is GPU, but the error I’m getting indicates that the code runs on the multiprocessor. How do I change the code so that it runs on the GPU?

The error has been solved by adding this guard in main file. Thank you so much @ptrblck
Now I’m getting this error:

Traceback (most recent call last):
File “main.py”, line 20, in
t.train()
File “E:\Deep_learning\TSAN\TSAN_patternnet_test\Train\trainer.py”, line 72, in train
** loss.backward()**
File “C:\Users\anaconda3\envs\TSAN\lib\site-packages\torch\tensor.py”, line 93, in backward
torch.autograd.backward(self, gradient, retain_graph, create_graph)
File “C:\Users\anaconda3\envs\TSAN\lib\site-packages\torch\autograd_init_.py”, line 89, in backward
allow_unreachable=True) # allow_unreachable flag
RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation

The new issue seems to be a known error in the repository as it was already posted here.
Generally, this error is raised if you are either calling backward multiple times (where the previous backward calls have freed the computation graph already) or if you are appending the computation graph and are thus trying to backpropagate through multiple iterations (same root cause as before as the previous backward call already freed the computation graph of the previous iteration).
I cannot find any obvious issues by quickly skimming through the repository so you might want to check if e.g. input tensors in a new iteration are still attached to a computation graph.

1 Like

I removed num_workers parameter from DataLoader and it seems it stopped using multithreading. It worked after that.

1 Like