RuntimeError: CUDA error: device-side assert triggered CUDA kernel errors might be asynchronously reported at some other API call,so the stacktrace below might be incorrect

Hello. The following code snippet has a runtime error

Relevant error:
File “run_dst.py”, line 863, in
main()
File “run_dst.py”, line 848, in main
result = evaluate(args, model, tokenizer, processor, prefix=global_step)
File “run_dst.py”, line 296, in evaluate
outputs = model(**inputs)
File “/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py”, line 1102, in _call_impl
return forward_call(*input, **kwargs)
File “/content/drive/My Drive/graph_transformer/modeling_bert_dst.py”, line 430, in forward
start_loss = token_loss_fct(start_logits, start_pos[slot])
File “/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py”, line 1102, in _call_impl
return forward_call(*input, **kwargs)
File “/usr/local/lib/python3.7/dist-packages/torch/nn/modules/loss.py”, line 1152, in forward
label_smoothing=self.label_smoothing)
File “/usr/local/lib/python3.7/dist-packages/torch/nn/functional.py”, line 2846, in cross_entropy
return torch._C._nn.cross_entropy_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index, label_smoothing)

As can be seen in the relevant code snippet, the original author of the code tried to manage this error.
I got this error by changing other parts of the code that are not related to this part, I do not know what is the reason?
Could it be because of the version of Pytorch?
Because the version used by the author is 1.4.0 and I used version 1.10.0.

1 Like

you should check the code on cpu and see what is the actual error.
but i guess it’s becuase of target dtype.
you can try .long().cuda() on all of the cross entroypy loss targets.
by the way you’re creating your loss functions in you the training loop.
it’s better to move it out

I made a correction but it still gives the same error?

Your target values are out of bounds. nn.CrossEntropyLoss expects the target to contain class indices in the range [0, nb_classes-1], so check the min/max values of the target and make sure they contain only valid values.

14 Likes

Yes, the number of class labels was not specified correctly.
I was confused just because the debugger did not pinpoint the error.
Thankful

I run into this error when training adversarial autoencoder network

for epoch in range(num_epochs):

    # init mini batch counter
    mini_batch_count = 0
    
    # init epoch training losses
    batch_reconstruction_losses = 0.0
    batch_discriminator_losses = 0.0
    batch_generator_losses = 0.0

    # determine if GPU training is enabled
    if (torch.backends.cudnn.version() != None) and (USE_CUDA == True):

        # set all networks / models in GPU mode
        encoder_train.cuda()
        decoder_train.cuda()
        discriminator_train.cuda()

    # set networks in training mode (apply dropout when needed)
    encoder_train.train()
    decoder_train.train()
    discriminator_train.train()
    
    # start timer
    start_time = datetime.now()

    # iterate over epoch mini batches
    for mini_batch_data in dataloader:

        # increase mini batch counter
        mini_batch_count += 1

        # determine if GPU training is enabled
        if (torch.backends.cudnn.version() != None) and (USE_CUDA == True):
          
            # convert mini batch to torch variable
            mini_batch_torch = torch.cuda.FloatTensor(mini_batch_data)

        else:
          
             # convert mini batch to torch variable
             mini_batch_torch = torch.FloatTensor(mini_batch_data)
        
        # reset the networks gradients
        encoder_train.zero_grad()
        decoder_train.zero_grad()
        discriminator_train.zero_grad()

        # =================== reconstruction phase =====================
        
        # run autoencoder encoding - decoding
        z_sample = encoder_train(mini_batch_torch)
        mini_batch_reconstruction = decoder_train(z_sample)

        # split input date to numerical and categorical part
        batch_cat = mini_batch_torch[:, :ori_dataset_categ_transformed.shape[1]]
        batch_num = mini_batch_torch[:, ori_dataset_categ_transformed.shape[1]:]
        
        # split reconstruction to numerical and categorical part
        rec_batch_cat = mini_batch_reconstruction[:, :ori_dataset_categ_transformed.shape[1]]
        rec_batch_num = mini_batch_reconstruction[:, ori_dataset_categ_transformed.shape[1]:]

        # backward pass + gradients update
        rec_error_cat = reconstruction_criterion_categorical(input=rec_batch_cat, target=batch_cat)  # one-hot attr error
        rec_error_num = reconstruction_criterion_numeric(input=rec_batch_num, target=batch_num)  # numeric attr error

        # combine both reconstruction errors
        reconstruction_loss = rec_error_cat + rec_error_num
        
        # run backward pass - determine gradients
        reconstruction_loss.backward()
        
        # collect batch reconstruction loss
        batch_reconstruction_losses += reconstruction_loss.item()
        
        # update network parameter - decoder and encoder
        decoder_optimizer.step()
        encoder_optimizer.step()

        # =================== regularization phase =====================
        # =================== discriminator training ===================

        # set discriminator in evaluation mode
        discriminator_train.eval()

        # generate target latent space data
        z_target_batch = z_continous_samples_all[random.sample(range(0, z_continous_samples_all.shape[0]), mini_batch_size),:]

        # convert to torch tensor
        z_target_batch = torch.FloatTensor(z_target_batch)

        if (torch.backends.cudnn.version() != None) and (USE_CUDA == True):
            z_target_batch = z_target_batch.cuda()

        # determine mini batch sample generated by the encoder -> fake gaussian sample
        z_fake_gauss = encoder_train(mini_batch_torch)

        # determine discriminator classification of both samples
        d_real_gauss = discriminator_train(z_target_batch) # real sampled gaussian 
        d_fake_gauss = discriminator_train(z_fake_gauss) # fake created gaussian

        # determine discriminator classification target variables
        d_real_gauss_target = torch.FloatTensor(torch.ones(d_real_gauss.shape)) # real -> 1
        d_fake_gauss_target = torch.FloatTensor(torch.zeros(d_fake_gauss.shape)) # fake -> 0

        # determine if GPU training is enabled
        if (torch.backends.cudnn.version() != None) and (USE_CUDA == True):

            # push tensors to CUDA
            d_real_gauss_target = d_real_gauss_target.cuda()
            d_fake_gauss_target = d_fake_gauss_target.cuda()

        # determine individual discrimination losses
        discriminator_loss_real = discriminator_criterion(target=d_real_gauss_target, input=d_real_gauss) # real loss
        discriminator_loss_fake = discriminator_criterion(target=d_fake_gauss_target, input=d_fake_gauss) # fake loss
        
        # add real loss and fake loss
        discriminator_loss = discriminator_loss_fake + discriminator_loss_real

        # run backward through the discriminator network
        discriminator_loss.backward()
        
        # collect discriminator loss
        batch_discriminator_losses += discriminator_loss.item()

        # update network the discriminator network parameters
        discriminator_optimizer.step()

        # reset the networks gradients
        encoder_train.zero_grad()
        decoder_train.zero_grad()
        discriminator_train.zero_grad()

        # =================== regularization phase =====================
        # =================== generator training =======================

        # set encoder / generator in training mode
        encoder_train.train()
        
        # reset the encoder / generator networks gradients
        encoder_train.zero_grad()

        # determine fake gaussian sample generated by the encoder / generator
        z_fake_gauss = encoder_train(mini_batch_torch)

        # determine discriminator classification of fake gaussian sample
        d_fake_gauss = discriminator_train(z_fake_gauss)

        # determine discriminator classification target variables
        d_fake_gauss_target = torch.FloatTensor(torch.ones(d_fake_gauss.shape)) # fake -> 1

        # determine if GPU training is enabled
        if (torch.backends.cudnn.version() != None) and (USE_CUDA == True):

            # push tensors to CUDA
            d_fake_gauss_target = d_fake_gauss_target.cuda()

        # determine discrimination loss of fake gaussian sample
        generator_loss = discriminator_criterion(target=d_fake_gauss_target, input=d_fake_gauss)
        
        # collect generator loss
        batch_generator_losses += generator_loss.item()

        # run backward pass - determine gradients
        generator_loss.backward()

        # update network paramaters - encoder / generatorc
        encoder_optimizer.step()

        # reset the networks gradients
        encoder_train.zero_grad()
        decoder_train.zero_grad()
        discriminator_train.zero_grad()

    # collect epoch training losses - reconstruction loss
    epoch_reconstruction_loss = batch_reconstruction_losses / mini_batch_count
    epoch_reconstruction_losses.extend([epoch_reconstruction_loss])
    
    # collect epoch training losses - discriminator loss
    epoch_discriminator_loss = batch_discriminator_losses / mini_batch_count
    epoch_discriminator_losses.extend([epoch_discriminator_loss])
    
    # collect epoch training losses - generator loss
    epoch_generator_loss = batch_generator_losses / mini_batch_count
    epoch_generator_losses.extend([epoch_generator_loss])
    
    # print epoch reconstruction loss
    now = datetime.utcnow().strftime("%Y%m%d-%H:%M:%S")
    print('[LOG TRAIN {}] epoch: {:04}/{:04}, reconstruction loss: {:.4f}'.format(now, epoch + 1, num_epochs, epoch_reconstruction_loss))
    print('[LOG TRAIN {}] epoch: {:04}/{:04}, discriminator loss: {:.4f}'.format(now, epoch + 1, num_epochs, epoch_discriminator_loss))
    print('[LOG TRAIN {}] epoch: {:04}/{:04}, generator loss: {:.4f}'.format(now, epoch + 1, num_epochs, epoch_generator_loss))
    
    # =================== save model snapshots to disk ============================
    
    # save trained encoder model file to disk
    now = datetime.utcnow().strftime("%Y%m%d-%H_%M_%S")
    encoder_model_name = "{}_ep_{}_encoder_model.pth".format(now, (epoch+1))
    torch.save(encoder_train.state_dict(), os.path.join("./models", encoder_model_name))

    # save trained decoder model file to disk
    decoder_model_name = "{}_ep_{}_decoder_model.pth".format(now, (epoch+1))
    torch.save(decoder_train.state_dict(), os.path.join("./models", decoder_model_name))
    
    # save trained discriminator model file to disk
    decoder_model_name = "{}_ep_{}_discriminator_model.pth".format(now, (epoch+1))
    torch.save(discriminator_train.state_dict(), os.path.join("./models", decoder_model_name))
 71         # run backward pass - determine gradients

—> 72 reconstruction_loss.backward()
73
74 # collect batch reconstruction loss

1 frames
/usr/local/lib/python3.9/dist-packages/torch/autograd/init.py in backward(tensors, grad_tensors, retain_graph, create_graph, grad_variables, inputs)
198 # some Python versions print out the first line of a multi-line function
199 # calls in the traceback and some print out the last line
→ 200 Variable.execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
201 tensors, grad_tensors
, retain_graph, create_graph, inputs,
202 allow_unreachable=True, accumulate_grad=True) # Calls into the C++ engine to run the backward pass

RuntimeError: CUDA error: device-side assert triggered
CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1.
Compile with TORCH_USE_CUDA_DSA to enable device-side assertions.

1 Like

@ptrblck how do you even get to know this. It worked. Thankful

1 Like

In my case, the label is ranging from 1-6. It should be 0-5 to fit the CELoss.

For me this happened when I trained a LayoutLMv1 model and one of the bboxes where not between 0 and 1000. Really unfortunate that there is no error message for that.

I saw this kind of error when the size of input rows was not equal to the target output.

Specifically changing the value of num_labels in AutoModelForSequenceClassification.from_pretrainedresolved the error in my code.

(It works for my case), You can check the number of your labels (ie the number is 7 and from 1 to 7).However, if your model expects zero-indexed labels (i.e., labels ranging from 0 to 6 ), you need to adjust the labels accordingly.