RuntimeError: Given groups=1, weight of size [512, 512, 3, 3], expected input[1, 3, 150, 150] to have 512 channels, but got 3 channels instead

import torch
import torch.nn as nn
import torchvision.models as models

class SSDWithVGG16(nn.Module):
def init(self, num_classes=2): # 2 object classes: filled and unfilled
super(SSDWithVGG16, self).init()

    # Load pretrained VGG16 backbone
    vgg16 = models.vgg16(weights='DEFAULT')
    self.backbone = nn.Sequential(*list(vgg16.features.children()))  # Use up to conv5_3 layer
    
    # Additional convolution layers for SSD300
    self.extra_layers = nn.Sequential(
        nn.Conv2d(512, 1024, kernel_size=3, padding=1, stride=2),  # Conv6
        nn.ReLU(),
        nn.Conv2d(1024, 1024, kernel_size=1),  # Conv7
        nn.ReLU(),
        nn.Conv2d(1024, 256, kernel_size=1),  # Conv8_1
        nn.Conv2d(256, 512, kernel_size=3, padding=1, stride=2),  # Conv8_2
        nn.Conv2d(512, 128, kernel_size=1),  # Conv9_1
        nn.Conv2d(128, 256, kernel_size=3, padding=1, stride=2),  # Conv9_2
        nn.Conv2d(256, 128, kernel_size=1),  # Conv10_1
        nn.Conv2d(128, 256, kernel_size=3, padding=1, stride=2),  # Conv10_2
        nn.Conv2d(256, 128, kernel_size=1),  # Conv11_1
        nn.Conv2d(128, 256, kernel_size=3, padding=1, stride=2),  # Conv11_2
    )

    # Multibox layers for bounding box predictions and class scores
    self.loc_layers = nn.ModuleList([
        nn.Conv2d(512, 4 * 4, kernel_size=3, padding=1),  # For conv4_3 feature map
        nn.Conv2d(512, 6 * 4, kernel_size=3, padding=1),  # For conv5_3 feature map
        nn.Conv2d(512, 6 * 4, kernel_size=3, padding=1),  # For conv8_2 feature map
        nn.Conv2d(256, 6 * 4, kernel_size=3, padding=1),  # For conv9_2 feature map
        nn.Conv2d(256, 4 * 4, kernel_size=3, padding=1),  # For conv10_2 feature map
        nn.Conv2d(256, 4 * 4, kernel_size=3, padding=1),  # For conv11_2 feature map
    ])

    self.conf_layers = nn.ModuleList([
        nn.Conv2d(512, 4 * num_classes, kernel_size=3, padding=1),  # For conv4_3 feature map
        nn.Conv2d(512, 6 * num_classes, kernel_size=3, padding=1),  # For conv5_3 feature map
        nn.Conv2d(512, 6 * num_classes, kernel_size=3, padding=1),  # For conv8_2 feature map
        nn.Conv2d(256, 6 * num_classes, kernel_size=3, padding=1),  # For conv9_2 feature map
        nn.Conv2d(256, 4 * num_classes, kernel_size=3, padding=1),  # For conv10_2 feature map
        nn.Conv2d(256, 4 * num_classes, kernel_size=3, padding=1),  # For conv11_2 feature map
    ])

def forward(self, x):
    # Extract feature maps from VGG16 backbone
    conv4_3 = self.backbone[:23](x)  # Output from conv4_3 (512 channels)
    conv5_3 = self.backbone[23:](x)  # Output from conv5_3 (512 channels)

    # Pass through additional layers
    x = self.extra_layers[0](conv5_3)  # Apply Conv6
    conv7 = self.extra_layers[1](x)  # Apply Conv7

    x = self.extra_layers[2](conv7)  # Apply Conv8_1
    conv8_2 = self.extra_layers[3](x)  # Apply Conv8_2

    x = self.extra_layers[4](conv8_2)  # Apply Conv9_1
    conv9_2 = self.extra_layers[5](x)  # Apply Conv9_2

    x = self.extra_layers[6](conv9_2)  # Apply Conv10_1
    conv10_2 = self.extra_layers[7](x)  # Apply Conv10_2

    x = self.extra_layers[8](conv10_2)  # Apply Conv11_1
    conv11_2 = self.extra_layers[9](x)  # Apply Conv11_2

    # Generate predictions at different scales
    loc_preds, conf_preds = [], []

    loc_preds.append(self.loc_layers[0](conv4_3).permute(0, 2, 3, 1).contiguous())  # conv4_3 output
    conf_preds.append(self.conf_layers[0](conv4_3).permute(0, 2, 3, 1).contiguous())  # conv4_3 output

    loc_preds.append(self.loc_layers[1](conv5_3).permute(0, 2, 3, 1).contiguous())  # conv5_3 output
    conf_preds.append(self.conf_layers[1](conv5_3).permute(0, 2, 3, 1).contiguous())  # conv5_3 output

    loc_preds.append(self.loc_layers[2](conv8_2).permute(0, 2, 3, 1).contiguous())  # conv8_2 output
    conf_preds.append(self.conf_layers[2](conv8_2).permute(0, 2, 3, 1).contiguous())  # conv8_2 output

    loc_preds.append(self.loc_layers[3](conv9_2).permute(0, 2, 3, 1).contiguous())  # conv9_2 output
    conf_preds.append(self.conf_layers[3](conv9_2).permute(0, 2, 3, 1).contiguous())  # conv9_2 output

    loc_preds.append(self.loc_layers[4](conv10_2).permute(0, 2, 3, 1).contiguous())  # conv10_2 output
    conf_preds.append(self.conf_layers[4](conv10_2).permute(0, 2, 3, 1).contiguous())  # conv10_2 output

    loc_preds.append(self.loc_layers[5](conv11_2).permute(0, 2, 3, 1).contiguous())  # conv11_2 output
    conf_preds.append(self.conf_layers[5](conv11_2).permute(0, 2, 3, 1).contiguous())  # conv11_2 output

    # Flatten the predictions
    loc_preds = torch.cat([p.view(p.size(0), -1) for p in loc_preds], dim=1)
    conf_preds = torch.cat([p.view(p.size(0), -1) for p in conf_preds], dim=1)

    return loc_preds, conf_preds

Example usage:

if name == “main”:
model = SSDWithVGG16(num_classes=2) # Adjust based on your needs
input_tensor = torch.randn(1, 3, 300, 300) # Example input shape for SSD300
loc_preds, conf_preds = model(input_tensor)
print(“Location Predictions Shape:”, loc_preds.shape)
print(“Confidence Predictions Shape:”, conf_preds.shape)

pls could any one help with this, becoz i struggling with more than a days

model.backbone[23:] expects an input activation with 512 channels while you are passing x to it with 3 channels only:

model.backbone[23:]
Sequential(
  (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (25): ReLU(inplace=True)
  (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (27): ReLU(inplace=True)
  (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (29): ReLU(inplace=True)
  (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)

I don’t know if this is a typo or if you want to pass another input to it.