RuntimeError: Output 0 of TBackward0 is a view and its base or another view of its base has been modified inplace. This view is the output of a function that returns multiple views. Such functions do not allow the output views to be modified inplace. You

def init_model():
    global model
    model = sag_resnet(depth=int(args.depth),
                       pretrained=not args.from_sketch,
                       num_classes=num_classes,
                       drop=args.drop,
                       sagnet=args.sagnet,
                       style_stage=args.style_stage)

    # print(model)
    model = torch.nn.DataParallel(model).cuda()


def train(step):
    global dataiter_srcs        # This list will later store iterators for each of the source domain data loaders.

    ## Initialize iteration
    model.train()

    ## Load data
    tic = time.time()
    
    n_srcs = len(args.sources)
    if step == 0:
        dataiter_srcs = [None] * n_srcs
    # Below lists will hold the data (input features) and labels (target values) for each source domain.
    data = [None] * n_srcs
    label = [None] * n_srcs
    for i in range(n_srcs):
        if step % len(loader_srcs[i]) == 0:
            dataiter_srcs[i] = iter(loader_srcs[i])
        data[i], label[i] = next(dataiter_srcs[i])

    data = torch.cat(data)
    label = torch.cat(label)
    rand_idx = torch.randperm(len(data))
    data = data[rand_idx]
    label = label[rand_idx].cuda()
    
    time_data = time.time() - tic

    ## Process batch
    tic = time.time()

    # forward pass
    y, y_style = model(data)            # y: prediction from Gc, y_style: prediction from Gs

    if args.sagnet:
        # learn style
        loss_style = criterion(y_style, label)             # Ls
        optimizer_style.zero_grad()
        loss_style.backward(retain_graph=True)
        optimizer_style.step()
    
        # learn style_adv
        loss_adv = args.w_adv * criterion_adv(y_style)     # Ladv
        optimizer_adv.zero_grad()
        loss_adv.backward(retain_graph=True)                 # GIVES ERROR GIVEN BELOW
        if args.clip_adv is not None:
            torch.nn.utils.clip_grad_norm_(model.module.adv_params(), args.clip_adv)
        optimizer_adv.step()
    
    # learn content
    loss = criterion(y, label)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    scheduler.step()
    if args.sagnet:
        scheduler_style.step()
        scheduler_adv.step()

    time_net = time.time() - tic


class AdvLoss(torch.nn.Module):
    def __init__(self, eps=1e-5):
        super().__init__()
        self.eps = eps

    def forward(self, inputs):
        inputs = inputs.softmax(dim=1)
        loss = - torch.log(inputs + self.eps).mean(dim=1)
        return loss.mean()

class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super().__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, padding=1, stride=stride, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out

class ResNet(nn.Module):

    def __init__(self, block, layers, num_classes=1000, drop=0, sagnet=True, style_stage=3):
        super().__init__()
        
        self.drop = drop
        self.sagnet = sagnet
        self.style_stage = style_stage

        self.inplanes = 64
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        
        self.avgpool = nn.AdaptiveAvgPool2d(1)
        self.dropout = nn.Dropout(self.drop)
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        if self.sagnet:
            # randomizations
            self.style_randomization = StyleRandomization()
            self.content_randomization = ContentRandomization()
            
            # style-biased network
            style_layers = []
            if style_stage == 1:
                self.inplanes = 64
                style_layers += [self._make_layer(block, 64, layers[0])]
            if style_stage <= 2:
                self.inplanes = 64 * block.expansion
                style_layers += [self._make_layer(block, 128, layers[1], stride=2)]
            if style_stage <= 3:
                self.inplanes = 128 * block.expansion
                style_layers += [self._make_layer(block, 256, layers[2], stride=2)]
            if style_stage <= 4:
                self.inplanes = 256 * block.expansion
                style_layers += [self._make_layer(block, 512, layers[3], stride=2)]
            self.style_net = nn.Sequential(*style_layers)
            
            self.style_avgpool = nn.AdaptiveAvgPool2d(1)
            self.style_dropout = nn.Dropout(self.drop)
            self.style_fc = nn.Linear(512 * block.expansion, num_classes)

        # init weights
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            if isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

    def adv_params(self):
        params = []
        layers = [self.bn1, self.layer1, self.layer2, self.layer3, self.layer4]
        for layer in layers[:self.style_stage]:
            for m in layer.modules():
                if isinstance(m, nn.BatchNorm2d):
                    params += [p for p in m.parameters()]
        return params

    def style_params(self):
        params = []
        for m in [self.style_net, self.style_fc]:
            params += [p for p in m.parameters()]
        return params

    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            if stride != 1:
                downsample = nn.Sequential(
                    nn.Conv2d(self.inplanes, planes * block.expansion, stride=stride,
                                   kernel_size=1, bias=False),
                    nn.BatchNorm2d(planes * block.expansion),
                )
            else:
                downsample = nn.Sequential(
                    nn.Conv2d(self.inplanes, planes * block.expansion,
                                   kernel_size=1, bias=False),
                    nn.BatchNorm2d(planes * block.expansion),
                )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))
        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        for i, layer in enumerate([self.layer1, self.layer2, self.layer3, self.layer4]):
            if self.sagnet and i + 1 == self.style_stage:       # If sagnet is enabled and the current layer is the style_stage, content and style randomization is applied.
                # randomization
                x_style = self.content_randomization(x)
                x = self.style_randomization(x)
            x = layer(x)

        # content output 
        feat = self.avgpool(x)
        feat = feat.view(x.size(0), -1)
        feat = self.dropout(feat)
        y = self.fc(feat)           # output of Gc (Content biased network)
    
        if self.sagnet:
            # style output
            x_style = self.style_net(x_style)
            feat = self.style_avgpool(x_style)
            feat = feat.view(feat.size(0), -1)
            feat = self.style_dropout(feat)
            y_style = self.style_fc(feat)
        else:
            y_style = None

        return y, y_style           # y: prediction from Gc, y_style: prediction from Gs


def sag_resnet(depth, pretrained=False, **kwargs):
    if depth == 18:
        model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
    elif depth == 50:
        model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
    elif depth == 101:
        model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
    elif depth == 152:
        model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)

    if pretrained:
        model_url = model_urls['resnet' + str(depth)]
        print('load a pretrained model from {}'.format(model_url))
    
        states = model_zoo.load_url(model_url)
        states.pop('fc.weight')
        states.pop('fc.bias')
        model.load_state_dict(states, strict=False)
    
        # This part constructs the style network's state dictionary (states_style) by extracting and adjusting the appropriate layers from the pre-trained state dictionary (states).
        if model.sagnet:
            states_style = {}
            for i in range(model.style_stage, 5):
                for k, v in states.items():
                    if k.startswith('layer' + str(i)):
                        states_style[str(i - model.style_stage) + k[6:]] = v
            model.style_net.load_state_dict(states_style)
    
    return model

File “train.py”, line 358, in train
loss_adv.backward(retain_graph=True)
File “/u/student/2023/cs23mtech14007/miniconda3/lib/python3.7/site-packages/torch/_tensor.py”, line 489, in backward
self, gradient, retain_graph, create_graph, inputs=inputs
File “/u/student/2023/cs23mtech14007/miniconda3/lib/python3.7/site-packages/torch/autograd/init.py”, line 199, in backward
allow_unreachable=True, accumulate_grad=True) # Calls into the C++ engine to run the backward pass
RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.cuda.FloatTensor [512, 7]], which is output 0 of AsStridedBackward0, is at version 2; expected version 1 instead. Hint: enable anomaly detection to find the operation that failed to compute its gradient, with torch.autograd.set_detect_anomaly(True).

@ptrblck Please help one last time sir…

Error is some where here:

print('dffffffffffff:', self.sagnet)
print(f"x_style version: {x_style._version}")
print(f"feat version: {feat._version}")

# Style-biased output (Gs), if SagNet is enabled
if self.sagnet:
    x_style = self.style_net(x_style)
    print(f"x_style version: {x_style._version}")
    feat = self.style_avgpool(x_style)
    feat = feat.view(feat.size(0), -1)
    feat = self.style_dropout(feat)
    y_style = self.style_fc(feat)
else:
    y_style = None

print(f"feat version: {feat._version}")
print(f"y_style version: {y_style._version}")

Output:
dffffffffffff: True
x_style version: 0
feat version: 0
x_style version: 2 #### x version got changed to 2
feat version: 0
y_style version: 0
/u/student/2023/cs23mtech14007/miniconda3/lib/python3.7/site-packages/torch/autograd/init.py:199: UserWarning: Error detected in AddmmBackward0. Traceback of forward call that caused the error: