RuntimeError: running_mean should contain 36 elements not 216

class BasicBlock(nn.Module):
def init(self, in_planes, out_planes, dropRate=0.0):
# input dimsnsion을 정하고, output dimension을 정하고(growh_rate임), dropRate를 정함.
super(BasicBlock, self).init()
self.bn1 = nn.BatchNorm2d(in_planes)
self.relu = nn.ReLU(inplace=True) # inplace 하면 input으로 들어온 것 자체를 수정하겠다는 뜻. 메모리 usage가 좀 좋아짐. 하지만 input을 없앰.
self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=1, padding=1, bias=False)
self.droprate = dropRate

def forward(self, x):
    out = self.conv1(self.relu(self.bn1(x)))
    if self.droprate > 0:
        out = F.dropout(out, p=self.droprate, training=self.training)
    return torch.cat([x, out], 1)

class BottleneckBlock(nn.Module):
def init(self, in_planes, out_planes, dropRate=0.0):
# out_planes => growh_rate를 입력으로 받게 된다.
super(BottleneckBlock, self).init()
inter_planes = out_planes * 4 # bottleneck layer의 conv 1x1 filter chennel 수는 4*growh_rate이다.
self.bn1 = nn.BatchNorm2d(in_planes)
self.relu = nn.ReLU(inplace=True)
self.conv1 = nn.Conv2d(in_planes, inter_planes, kernel_size=1, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(inter_planes)
self.conv2 = nn.Conv2d(inter_planes, out_planes, kernel_size=3, stride=1, padding=0, bias=False)
self.droprate = dropRate

def forward(self, x):
    out = self.conv1(self.relu(self.bn1(x)))
    if self.droprate > 0:
        out = F.dropout(out, p=self.droprate, inplace=False, training=self.training)
    out = self.conv2(self.relu(self.bn2(out)))
    if self.droprate > 0:
        out = F.dropout(out, p=self.droprate, inplace=False, training=self.training)
    return torch.cat([x, out], 1)  # 입력으로 받은 x와 새로 만든 output을 합쳐서 내보낸다

class DenseBlock(nn.Module):
def init(self,nb_layers,in_planes,growh_rate,block,dropRate=0.0):
super(DenseBlock,self).init()
self.layer = self._make_layer(block, in_planes, growh_rate, nb_layers, dropRate)
def _make_layer(self,block,in_planes,growh_rate,nb_layers,dropRate):
layers=[]
for i in range(nb_layers):
layers.append(block(in_planes + i*growh_rate ,growh_rate,dropRate))
return nn.Sequential(*layers)
def forward(self,x):
return self.layer(x)

class TransitionBlock(nn.Module):
def init(self,in_planes,out_planes,dropRate=0.0):
super(TransitionBlock,self).init()
self.bn1 = nn.BatchNorm2d(in_planes)
self.relu = nn.ReLU(inplace=True)
self.conv1 = nn.Conv2d(in_planes,out_planes,kernel_size=1,stride=1,padding=0,bias=False)
self.droprate = dropRate
def forward(self,x):
out = self.conv1(self.relu(self.bn1(x)))
if self.droprate>0:
out = F.dropout(out,p=self.droprate,inplace=False,training=self.training)
return F.avg_pool2d(out,2)

class DenseNet(nn.Module):
def init(self, depth, num_classes, growh_rate=12, reduction=0.5, bottleneck=True, dropRate=0.0):
super(DenseNet, self).init()
num_of_blocks = 3
in_planes = 16 # 2 * growh_rate
n = (
depth - num_of_blocks - 1) / num_of_blocks # 총 depth에서 첫 conv , 2개의 transit , 마지막 linear 빼고 / num_of_blocks
if reduction != 1:
in_planes = 2 * growh_rate
if bottleneck == True:
in_planes = 2 * growh_rate # 논문에서 Bottleneck + Compression 할 경우 first layer은 2*growh_rate라고 했다.
n = n / 2 # conv 1x1 레이어가 추가되니까 !
block = BottleneckBlock
else:
block = BasicBlock

    n = int(n)  # n = DenseBlock에서 block layer 개수를 의미한다.
    self.conv1 = nn.Conv2d(3, in_planes, kernel_size=3, stride=1, padding=1,
                           bias=False)  # input:RGB -> output:growhR*2

    # 1st block
    # nb_layers,in_planes,growh_rate,block,dropRate
    self.block1 = DenseBlock(n, in_planes, growh_rate, block, dropRate)
    in_planes = int(in_planes + n * growh_rate)  # 입력 + 레이어 만큼의 growh_rate

    # in_planes,out_planes,dropRate
    self.trans1 = TransitionBlock(in_planes, int(math.floor(in_planes * reduction)), dropRate=dropRate)
    in_planes = int(math.floor(in_planes * reduction))

    # 2nd block
    # nb_layers,in_planes,growh_rate,block,dropRate
    self.block2 = DenseBlock(n, in_planes, growh_rate, block, dropRate)
    in_planes = int(in_planes + n * growh_rate)  # 입력 + 레이어 만큼의 growh_rate

    # in_planes,out_planes,dropRate
    self.trans2 = TransitionBlock(in_planes, int(math.floor(in_planes * reduction)), dropRate=dropRate)
    in_planes = int(math.floor(in_planes * reduction))

    # 3rd block
    # nb_layers,in_planes,growh_rate,block,dropRate
    self.block3 = DenseBlock(n, in_planes, growh_rate, block, dropRate)
    in_planes = int(in_planes + n * growh_rate)  # 입력 + 레이어 만큼의 growh_rate

    self.bn1 = nn.BatchNorm2d(in_planes)
    self.relu = nn.ReLU(inplace=True)

    self.fc = nn.Linear(in_planes, num_classes)  # 마지막에 ave_pool 후에 1x1 size의 결과만 남음.

    self.in_planes = in_planes

    # module 초기화
    for m in self.modules():
        if isinstance(m, nn.Conv2d):
            # Conv layer들은 필터에서 나오는 분산 root(2/n)로 normalize 함
            # mean = 0 , 분산 = sqrt(2/n) // 이게 무슨 초기화 방법이었는지 기억이 안난다.
            n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            m.weight.data.normal_(0, math.sqrt(2. / n))
        elif isinstance(m, nn.BatchNorm2d):  # shifting param이랑 scaling param 초기화(?)
            m.weight.data.fill_(1)  #
            m.bias.data.zero_()
        elif isinstance(m, nn.Linear):  # linear layer 초기화.
            m.bias.data.zero_()

def forward(self, x):
    # x : 32*32
    out = self.conv1(x)  # 32*32
    out = self.block1(out)  # 32*32
    out = self.trans1(out)  # 16*16
    out = self.block2(out)  # 16*16
    out = self.trans2(out)  # 8*8
    out = self.block3(out)  # 8*8
    out = self.relu(self.bn1(out))  # 8*8
    out = F.avg_pool2d(out, 8)  # 1*1
    out = out.view(-1, self.in_planes)  # channel수만 남기 때문에 Linear -> in_planes
    return self.fc(out)

error

start train
Traceback (most recent call last):
File “/home/jake/Gits/pytorch_/classification/main.py”, line 98, in
train()
File “/home/jake/Gits/pytorch_/classification/main.py”, line 53, in train
outputs = net(inputs)
File “/home/jake/venv/lib/python3.7/site-packages/torch/nn/modules/module.py”, line 541, in call
result = self.forward(input, **kwargs)
File “/home/jake/Gits/pytorch_/classification/models/Densenet.py”, line 150, in forward
out = self.trans1(out) # 16
16
File “/home/jake/venv/lib/python3.7/site-packages/torch/nn/modules/module.py”, line 541, in call
result = self.forward(*input, **kwargs)
File “/home/jake/Gits/pytorch_/classification/models/Densenet.py”, line 77, in forward
out = self.conv1(self.relu(self.bn1(x)))
File “/home/jake/venv/lib/python3.7/site-packages/torch/nn/modules/module.py”, line 541, in call
result = self.forward(*input, **kwargs)
File “/home/jake/venv/lib/python3.7/site-packages/torch/nn/modules/batchnorm.py”, line 81, in forward
exponential_average_factor, self.eps)
File “/home/jake/venv/lib/python3.7/site-packages/torch/nn/functional.py”, line 1670, in batch_norm
training, momentum, eps, torch.backends.cudnn.enabled
RuntimeError: running_mean should contain 36 elements not 216

Process finished with exit code 1

This error is raised, if you pass an input with a wrong number of channels to a batch norm layer as shown here:

bn = nn.BatchNorm2d(216)
x = torch.randn(1, 36, 4, 4) # dim1 should be 36!
out = bn(x)
> RuntimeError: running_mean should contain 36 elements not 216

Your code is hard to read, as you haven’t formatted it.
You can post code snippets by wrapping them into three backticks ```, which would make debugging easier.