# Stochastic Depth TypeError: forward() takes 2 positional arguments but 4 were given

Hi,

I’m implementing Stochastic Depth on ResNet. But got the TypeError in forward(). Is there a way to fix this?
Thank you in advance!

“”"
Resnet for cifar dataset.
Ported from
https://github.com/facebook/fb.resnet.torch
and
https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
“”"
import torch
import torch.nn as nn
import math

all = [‘resnet’, ‘sto_depth_resnet’]

def conv3x3(in_planes, out_planes, stride=1):
“3x3 convolution with padding”
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)

class BasicBlock(nn.Module):
expansion = 1

``````def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride

def forward(self, x):
residual = x

out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)

out = self.conv2(out)
out = self.bn2(out)

if self.downsample is not None:
residual = self.downsample(x)

out += residual
out = self.relu(out)

return out
``````

class Bottleneck(nn.Module):
expansion = 4

``````def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride

def forward(self, x):
residual = x

out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)

out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)

out = self.conv3(out)
out = self.bn3(out)

if self.downsample is not None:
residual = self.downsample(x)

out += residual
out = self.relu(out)

return out
``````

class BasicBlock_stochastic_depth(nn.Module):
expansion = 1

``````def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock_stochastic_depth, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride

def forward(self, x, active, prob):
if self.training:
if active == 1:
print('active')
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)

out = self.conv2(out)
out = self.bn2(out)

if self.downsample is not None:
residual = self.downsample(x)

out += residual
out = self.relu(out)
else:
print('inactive')
out = x
if self.downsample is not None:
out = self.downsample(out)
out = self.relu(out)

else:
residual = x

out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)

out = self.conv2(out)
out = self.bn2(out)

if self.downsample is not None:
residual = self.downsample(x)

out = prob * out + residual
out = self.relu(out)

return out
``````

class Bottleneck_stochastic_depth(nn.Module):
expansion = 4

``````def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck_stochastic_depth, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride

def forward(self, x, active, prob):
if self.training:
if active == 1:
print('active')
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)

out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)

out = self.conv3(out)
out = self.bn3(out)

if self.downsample is not None:
residual = self.downsample(x)

out += residual
out = self.relu(out)
else:
print('inactive')
out = x
if self.downsample is not None:
out = self.downsample(out)
out = self.relu(out)
else:
residual = x

out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)

out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)

out = self.conv3(out)
out = self.bn3(out)

if self.downsample is not None:
residual = self.downsample(x)

out = prob * out + residual
out = self.relu(out)

return out
``````

class ResNet(nn.Module):

``````def __init__(self, depth, num_classes=1000, block_name='BasicBlock'):
super(ResNet, self).__init__()
# Model type specifies number of layers for CIFAR-10 model
if block_name.lower() == 'basicblock':
assert(depth - 2) % 6 == 0, 'When use basicblock, depth should be 6n+2, e.g. 20, 32, 44, 56, 110, 1202'
n = (depth - 2) // 6
block = BasicBlock
elif block_name.lower() == 'bottleneck':
assert (depth == 2) % 9 == 0, 'When use bottleneck, depth should be 9n + 2, e.g. 20, 29, 47, 56, 110, 1199'
n = (depth - 2) // 9
block = Bottleneck
else:
raise ValueError('block_name should be Basicblock or Bottleneck')

self.inplanes = 16
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(16)
self.relu = nn.ReLU(inplace=True)
self.layer1 = self._make_layer(block, 16, n)
self.layer2 = self._make_layer(block, 32, n, stride=2)
self.layer3 = self._make_layer(block, 64, n, stride=2)
self.avgpool = nn.AvgPool2d(8)
self.fc = nn.Linear(64 * block.expansion, num_classes)

for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2./n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()

def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion)
)

layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))

return nn.Sequential(*layers)

def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)

x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)

x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)

return x
``````

class ResNetSD(nn.Module):

``````def __init__(self, depth, num_classes=1000, block_name='BasicBlock'):
super(ResNetSD, self).__init__()
# Model type specifies number of layers for CIFAR-10 model
if block_name.lower() == 'basicblock':
assert(depth - 2) % 6 == 0, 'When use basicblock, depth should be 6n+2, e.g. 20, 32, 44, 56, 110, 1202'
n = (depth - 2) // 6
block = BasicBlock_stochastic_depth
elif block_name.lower() == 'bottleneck':
assert (depth == 2) % 9 == 0, 'When use bottleneck, depth should be 9n + 2, e.g. 20, 29, 47, 56, 110, 1199'
n = (depth - 2) // 9
block = Bottleneck_stochastic_depth
else:
raise ValueError('block_name should be Basicblock or Bottleneck')

self.probabilities = torch.tensor(0.5)
self.actives = torch.bernoulli(self.probabilities)

self.inplanes = 16
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(16)
self.relu = nn.ReLU(inplace=True)
self.layer1 = self._make_layer(block, 16, n)
self.layer2 = self._make_layer(block, 32, n, stride=2)
self.layer3 = self._make_layer(block, 64, n, stride=2)
self.avgpool = nn.AvgPool2d(8)
self.fc = nn.Linear(64 * block.expansion, num_classes)

for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2./n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()

def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion)
)

layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))

return nn.Sequential(*layers)

def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)

x = self.layer1(x, self.actives, self.probabilities)
x = self.layer2(x, self.actives, self.probabilities)
x = self.layer3(x, self.actives, self.probabilities)

x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)

return x
``````

def resnet(**kwargs):
“”"
Constructs a ResNet model.
:param kwargs:
:return:
“”"
return ResNet(**kwargs)

def sto_depth_resnet(**kwargs):
return ResNetSD(**kwargs)

if name == “main”:
import timeit

``````batch_size = 512
model = sto_depth_resnet(depth=20, num_classes=1000)

data = torch.rand(batch_size, 3, 32, 32).cuda()
print('data.device = ', data.device)

model = torch.nn.DataParallel(model).cuda()
for m in model.modules():
print(m)

start = timeit.default_timer()
out = model(data)
end = timeit.default_timer()

print('Done.')``````