I followed your suggestion, changed the transforms to an alternative name
Now I get a different error when I run this block
num_epochs = 10
for epoch in range(num_epochs):
   # train for one epoch, printing every 10 iterations
   train_one_epoch(model, optimizer, data_loader, device, epoch,print_freq=10)
# update the learning rate
   lr_scheduler.step()
   # evaluate on the test dataset
   evaluate(model, data_loader_test, device=device)
os.mkdir("/content/drive/MyDrive/PytorchObjectDetector/fr_dataset/")
torch.save(model.state_dict(), "/content/drive/MyDrive/PytorchObjectDetector/fr_dataset/model")
Error I get
/usr/local/lib/python3.7/dist-packages/torch/utils/data/dataloader.py:490: UserWarning: This DataLoader will create 4 worker processes in total. Our suggested max number of worker in current system is 2, which is smaller than what this DataLoader is going to create. Please be aware that excessive worker creation might get DataLoader running slow or even freeze, lower the worker number to avoid potential slowness/freeze if necessary.
  cpuset_checked))
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-16-8e894f6729ee> in <module>()
      2 for epoch in range(num_epochs):
      3    # train for one epoch, printing every 10 iterations
----> 4    train_one_epoch(model, optimizer, data_loader, device, epoch,print_freq=10)
      5 # update the learning rate
      6    lr_scheduler.step()
5 frames
/usr/local/lib/python3.7/dist-packages/torch/_utils.py in reraise(self)
    455             # instantiate since we don't know how to
    456             raise RuntimeError(msg) from None
--> 457         raise exception
    458 
    459 
TypeError: Caught TypeError in DataLoader worker process 0.
Original Traceback (most recent call last):
  File "/usr/local/lib/python3.7/dist-packages/torch/utils/data/_utils/worker.py", line 287, in _worker_loop
    data = fetcher.fetch(index)
  File "/usr/local/lib/python3.7/dist-packages/torch/utils/data/_utils/fetch.py", line 49, in fetch
    data = [self.dataset[idx] for idx in possibly_batched_index]
  File "/usr/local/lib/python3.7/dist-packages/torch/utils/data/_utils/fetch.py", line 49, in <listcomp>
    data = [self.dataset[idx] for idx in possibly_batched_index]
  File "/usr/local/lib/python3.7/dist-packages/torch/utils/data/dataset.py", line 471, in __getitem__
    return self.dataset[self.indices[idx]]
  File "<ipython-input-6-8432aadbd103>", line 28, in __getitem__
    img, target = self.transforms(img, target)
TypeError: __call__() takes 2 positional arguments but 3 were given
This the block of code where the error is pointing to
class FrDataset(torch.utils.data.Dataset):
    def __init__(self, root, data_file, transforms=None):
        self.root = root
        self.transforms = transforms
        self.imgs = sorted(os.listdir(os.path.join(root, "images")))
        self.path_to_data_file = data_file
    def __getitem__(self, idx):
        # load images and bounding boxes
        img_path = os.path.join(self.root, "images", self.imgs[idx])
        img = Image.open(img_path).convert("RGB")
        box_list = parse_one_annot(self.path_to_data_file, 
        self.imgs[idx])
        boxes = torch.as_tensor(box_list, dtype=torch.float32)
        num_objs = len(box_list)
        # there is only one class
        labels = torch.ones((num_objs,), dtype=torch.int64)
        image_id = torch.tensor([idx])
        area = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:,0])
        # suppose all instances are not crowd
        iscrowd = torch.zeros((num_objs,), dtype=torch.int64)
        target = {}
        target["boxes"] = boxes
        target["labels"] = labels
        target["image_id"] = image_id
        target["area"] = area
        target["iscrowd"] = iscrowd
        if self.transforms is not None:
            img, target = self.transforms(img, target)
        return img, target
    def __len__(self):
            return len(self.imgs)