import torch
import torchvision
import torchvision.transforms as transforms
#from torch.autograd import Variable
transform=transforms.Compose([transforms.Resize(256),transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))])
trainset = torchvision.datasets.CIFAR10(root=’./data’, train=True,
download=True, transform=transform)
trainloader=torch.utils.data.DataLoader(trainset,batch_size=4,shuffle=True,
num_workers=2)
testset = torchvision.datasets.CIFAR10(root=’./data’, train=False,
download=True, transform=transform)
testloader=torch.utils.data.DataLoader(testset,batch_size=4,shuffle=False,
num_workers=2)
classes=(‘plane’,‘car’,‘bird’,‘cat’,‘deer’,‘dog’,‘frog’,‘horse’,‘ship’,‘truck’)
import torch.nn as nn
import torch.nn.functional as F
device=torch.device(“cuda:0” if torch.cuda.is_available() else “cpu”)
import torchvision.models as models
alexnet=models.alexnet(pretrained=True)
alexnet.classifier[6]=nn.Linear(4096,10)
print(alexnet)
print(‘Model Downloaded’)
class CifarAlexnet(nn.Module):
def __init__(self,alexnet):
super(CifarAlexnet,self).__init__()
self.alexnet=alexnet
def forward(self,x):
return self.alexnet(x)
model=CifarAlexnet(alexnet)
print(model)
import time
import torch.optim as optim
batch_size=128
epochs=5
model.to(device)
criterion=nn.CrossEntropyLoss()
optimizer=optim.Adam(alexnet.parameters(),lr=0.0001)
for epoch in range(epochs):
running_loss=0.0
total=0
probs=0
correct_classified=0
start_time=time.time()
model.train()
for i,data in enumerate(trainloader):
inputs,labels=data
inputs,labels=inputs.to(device),labels.to(device)
optimizer.zero_grad()
outputs=model(inputs)
loss=criterion(outputs,labels)
loss.backward()
optimizer.step()
# _,predicted=torch.max(outputs.data,1)
predicted=torch.argmax(outputs,1)
total+=labels.size(0)
probs=F.softmax(outputs,1)[1]
#print(“probs=”,probs)
correct_classified+=(predicted==labels).sum().item()
running_loss+=loss.item()
if i % 200 == 199:
avg_loss=running_loss/200
print(‘Epoch:[%d, %5d] Batch: %5d loss: %.3f’ % (epoch+1,i+1,i+1,avg_loss))
running_loss=0.0
train_acc=(100correct_classified/total)
# print(“Time/epoch: {} sec”.format(time.time()-start_time))
# train_acc=(correct_classified/total)
# print(‘Train Accuracy :%d’%(train_acc))
correct_1=0.0
correct_5=0.0
correct=0
c=0
total=0
model.eval()
with torch.no_grad():
for data in testloader:
images,labels=data
inputs,labels=images.to(device),labels.to(device)
#img=Variable(images).cuda()
#lab=Variable(labels).cuda()
outputs=model(inputs)
# _,predicted=torch.max(outputs.data,1)
predicted=torch.argmax(outputs,1)
total+=labels.size(0)
c+=(predicted==labels).sum().item()
#outc=model(img)
pred=outputs.topk(5,1,largest=True,sorted=True)
#pred=pred.t()
lab=labels.view(labels.size(0),-1).expand_as(pred)
# correct=pred.eq(lab).float()
correct=pred.eq(lab).float()
correct_5+=correct[:,:5].sum()
correct_1+=correct[:,:1].sum()
test_acc=(100c/total)
print("c=",c," total=",total,"correct_1=",correct_1,"correct_5=",correct_5)
print('Accuracy of the network on test images:%.3f'%(test_acc))
print('Top 1 error:%2.2f' % (1-correct_1/total))
print('Top 5 error:%2.2f' % (1-correct_5/total))
print(‘trained’)
Error: Traceback (most recent call last):
File “AlexCIFAR10.py”, line 107, in
lab=labels.view(labels.size(0),-1).expand_as(pred)
TypeError: expand_as(): argument ‘other’ (position 1) must be Tensor, not torch.return_types.topk
I want to calculate the top 1 error and top 5 error but I’m getting this error how do I correct it
@ptrblck help me please