import os
import math
import time
import inspect
from dataclasses import dataclass
import torch
import torch.nn as nn
from torch.nn import functional as F
# --------------------------------------------------------------------------------------------------------
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
self.c_proj.NANOGPT_SCALE_INIT = 1
self.n_head = config.n_head
self.n_embd = config.n_embd
self.register_buffer('bias', torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
def forward(self, x):
B, T, C = x.size()
qkv = self.c_attn(x)
q, k, v = qkv.split(self.n_embd, dim=2)
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
y = F.scaled_dot_product_attention(q, k, v, is_causal=True)
y = y.transpose(1, 2).contiguous().view(B, T, C)
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
self.gelu = nn.GELU(approximate='tanh')
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
self.c_proj.NANOGPT_SCALE_INIT = 1
def forward(self, x):
x = self.c_fc(x)
x = self.gelu(x)
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.ln_1 = nn.LayerNorm(config.n_embd)
self.attn = CausalSelfAttention(config)
self.ln_2 = nn.LayerNorm(config.n_embd)
self.mlp = MLP(config)
def forward(self, x):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
@dataclass
class GPTConfig:
block_size: int = 1024
vocab_size: int = 50257
n_layer: int = 12
n_head: int = 12
n_embd: int = 768
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
wpe = nn.Embedding(config.block_size, config.n_embd),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
ln_f = nn.LayerNorm(config.n_embd)
))
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
self.transformer.wte.weight = self.lm_head.weight
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
std = 0.02
if hasattr(module, 'NANOGPT_SCALE_INIT'):
std *= (2 * self.config.n_layer) ** -0.5
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None):
B, T = idx.size()
assert T <= self.config.block_size, f'Cannot forward sequence of length {T}, block size is only {self.config.block_size}'
pos = torch.arange(0, T, dtype=torch.long, device=idx.device)
pos_emb = self.transformer.wpe(pos)
tok_emb = self.transformer.wte(idx)
x = tok_emb + pos_emb
for block in self.transformer.h:
x = block(x)
x = self.transformer.ln_f(x)
logits = self.lm_head(x)
loss = None
if targets is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
return logits, loss
# --------------------------------------------------------------------------------------------------------
import tiktoken
class DataLoaderLite:
def __init__(self, B, T):
self.B = B
self.T = T
with open('./data/input.txt', 'r') as f:
text = f.read()
enc = tiktoken.get_encoding('gpt2')
tokens = enc.encode(text, allowed_special={'<|endoftext|>'})
self.tokens = torch.tensor(tokens)
print(f'loaded {len(self.tokens)} tokens')
print(f'1 epoch = {len(self.tokens) // (B * T)} batches')
self.current_position = 0
def next_batch(self):
B, T = self.B, self.T
buf = self.tokens[self.current_position: self.current_position + B * T + 1]
x = buf[:-1].view(B, T)
y = buf[1:].view(B, T)
self.current_position += B * T
if self.current_position + ( B * T + 1) > len(self.tokens):
self.current_position = 0
return x, y
# --------------------------------------------------------------------------------------------------------
import time
torch.manual_seed(1337)
device = 'cpu'
if torch.cuda.is_available():
torch.cuda.manual_seed(1337)
device = 'cuda'
elif hasattr(torch.backends, 'mps') and torch.mps.is_available():
torch.mps.manual_seed(1337)
device = 'mps'
print(f'using device: {device}')
train_loader = DataLoaderLite(B=16, T=1024)
torch.set_float32_matmul_precision('high')
model = GPT(GPTConfig(vocab_size=50304))
model.to(device)
model = torch.compile(model)
optimizer = torch.optim.AdamW(model.parameters(), lr=3e-4)
for i in range(50):
t0 = time.time()
x, y = train_loader.next_batch()
x, y = x.to(device), y.to(device)
optimizer.zero_grad()
with torch.autocast(device_type=device, dtype=torch.bfloat16):
logits, loss = model(x, y)
loss.backward()
optimizer.step()
# torch.mps.synchronize() # Waits for all kernels in all streams on a MPS device to complete.
t1 = time.time()
dt = (t1 - t0) * 1000
tokens_per_sec = (train_loader.B * train_loader.T) / (t1 - t0)
print(f'step: {i}, loss: {loss.item()}, dt: {dt:.2f}ms, tok/sec: {tokens_per_sec:.2f}')
import sys
sys.exit(0)
with torch.compile - loss is nan
without torch.compile - loss converges correctly as expected
