I’m encountering some issue where torch.cuda.is_available()
returns False
even though I’ve correctly installed the NVIDIA driver on my Linux machine. I’ve tried to reinstall pytorch in a new environment using pip and conda, neither worked either.
Here are the details when I run collect_env:
<frozen runpy>:128: RuntimeWarning: 'torch.utils.collect_env' found in sys.modules after import of package 'torch.utils', but prior to execution of 'torch.utils.collect_env'; this may result in unpredictable behaviour
Collecting environment information...
/home/edward/Documents/default_venv/lib/python3.11/site-packages/torch/cuda/__init__.py:141: UserWarning: CUDA initialization: CUDA unknown error - this may be due to an incorrectly set up environment, e.g. changing env variable CUDA_VISIBLE_DEVICES after program start. Setting the available devices to be zero. (Triggered internally at ../c10/cuda/CUDAFunctions.cpp:108.)
return torch._C._cuda_getDeviceCount() > 0
PyTorch version: 2.2.1+cu118
Is debug build: False
CUDA used to build PyTorch: 11.8
ROCM used to build PyTorch: N/A
OS: Debian GNU/Linux 12 (bookworm) (x86_64)
GCC version: (Debian 12.2.0-14) 12.2.0
Clang version: Could not collect
CMake version: Could not collect
Libc version: glibc-2.36
Python version: 3.11.2 (main, Mar 13 2023, 12:18:29) [GCC 12.2.0] (64-bit runtime)
Python platform: Linux-6.1.0-18-amd64-x86_64-with-glibc2.36
Is CUDA available: False
CUDA runtime version: 11.8.89
CUDA_MODULE_LOADING set to: N/A
GPU models and configuration: GPU 0: NVIDIA GeForce RTX 2070
Nvidia driver version: 525.147.05
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 43 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 16
On-line CPU(s) list: 0-15
Vendor ID: AuthenticAMD
Model name: AMD Ryzen 7 2700X Eight-Core Processor
CPU family: 23
Model: 8
Thread(s) per core: 2
Core(s) per socket: 8
Socket(s): 1
Stepping: 2
Frequency boost: enabled
CPU(s) scaling MHz: 72%
CPU max MHz: 3700.0000
CPU min MHz: 2200.0000
BogoMIPS: 7385.93
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb hw_pstate ssbd ibpb vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt sha_ni xsaveopt xsavec xgetbv1 clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif overflow_recov succor smca sev sev_es
Virtualization: AMD-V
L1d cache: 256 KiB (8 instances)
L1i cache: 512 KiB (8 instances)
L2 cache: 4 MiB (8 instances)
L3 cache: 16 MiB (2 instances)
NUMA node(s): 1
NUMA node0 CPU(s): 0-15
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Retbleed: Mitigation; untrained return thunk; SMT vulnerable
Vulnerability Spec rstack overflow: Mitigation; safe RET
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, STIBP disabled, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.26.2
[pip3] onnx==1.15.0
[pip3] onnxruntime==1.15.1
[pip3] torch==2.2.1+cu118
[pip3] torchaudio==2.2.1+cu118
[pip3] torchvision==0.17.1+cu118
[pip3] triton==2.2.0
[conda] No relevant packages
Here are the result from nvidia-smi:
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 525.147.05 Driver Version: 525.147.05 CUDA Version: 12.0 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 NVIDIA GeForce ... On | 00000000:09:00.0 On | N/A |
| 0% 39C P8 23W / 185W | 727MiB / 8192MiB | 25% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| 0 N/A N/A 2673 G /usr/lib/xorg/Xorg 435MiB |
| 0 N/A N/A 2874 G ...ome-remote-desktop-daemon 1MiB |
| 0 N/A N/A 2906 G /usr/bin/gnome-shell 58MiB |
| 0 N/A N/A 3607 G /usr/lib/insync/insync 2MiB |
| 0 N/A N/A 4193 G ...--variations-seed-version 75MiB |
| 0 N/A N/A 6346 G ...RendererForSitePerProcess 91MiB |
| 0 N/A N/A 1417875 G ...--variations-seed-version 58MiB |
+-----------------------------------------------------------------------------+
I’ve gone through many post looking for solutions yet have not figured this out yet. Your insights would be greatly appreciated!