TrOCR model running slow on Jetson Nano

Hi, I’m using TrOCR on a Nvidia Jetson Nano, and I’m noticing that it’s taking a considerable amount of time for inference, causing the system to perform slowly. Is there a way to improve this?

import torch
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
from PIL import Image

processor = TrOCRProcessor.from_pretrained('microsoft/trocr-large-printed')
model = VisionEncoderDecoderModel.from_pretrained('microsoft/trocr-large-printed')

def perform_ocr(image_path):
    image = Image.open(image_path).convert("RGB")

    pixel_values = processor(images=image, return_tensors="pt").pixel_values.to(device)
    generated_ids = model.generate(pixel_values)
    generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]

    return generated_text

Thanks