-
2 nodes ,1 container/node
-
only cpu
-
code run in container
-
connect by tcp
-
docker run -it run --rm -it --ipc=host --network=host xxx
-
python mnist.py --init-method tcp://ip:port --rank 0 --world-size 2 python mnist.py --init-method tcp://ip:port --rank 1 --world-size 2
my code is here
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import time
import torch.nn.parallel
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.utils.data
import torch.utils.data.distributed
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=1024, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=20, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_false', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--init-method', type=str, default='tcp://127.0.0.1:23456')
parser.add_argument('--rank', type=int)
parser.add_argument('--world-size',type=int)
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
dist.init_process_group(init_method=args.init_method,backend="gloo",world_size=args.world_size,rank=args.rank,group_name="pytorch_test")
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
train_dataset=datasets.MNIST('data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]))
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=args.batch_size, shuffle=True, **kwargs,sampler=train_sampler)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x)
model = Net()
model = torch.nn.parallel.DistributedDataParallelCPU(model)
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
def train(epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def test():
model.eval()
test_loss = 0
correct = 0
for data, target in test_loader:
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data, volatile=True), Variable(target)
output = model(data)
test_loss += F.nll_loss(output, target, size_average=False).item() # sum up batch loss
pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability
correct += pred.eq(target.data.view_as(pred)).cpu().sum()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
tot_time=0;
for epoch in range(1, args.epochs + 1):
train_sampler.set_epoch(epoch)
start_cpu_secs = time.time()
#long running
train(epoch)
end_cpu_secs = time.time()
print("Epoch {} of {} took {:.3f}s".format(
epoch , args.epochs , end_cpu_secs - start_cpu_secs))
tot_time+=end_cpu_secs - start_cpu_secs
test()
print("Total time= {:.3f}s".format(tot_time))
and then i got problem
File "mnsit.py", line 43, in <module>
dist.init_process_group(init_method=args.init_method,backend="gloo",world_size=args.world_size,rank=args.rank,group_name="pytorch_test")
File "/opt/conda/lib/python3.6/site-packages/torch/distributed/distributed_c10d.py", line 416, in init_process_group
timeout=timeout)
File "/opt/conda/lib/python3.6/site-packages/torch/distributed/distributed_c10d.py", line 484, in _new_process_group_helper
timeout=timeout)
RuntimeError: [/pytorch/third_party/gloo/gloo/transport/tcp/pair.cc:760] connect [127.0.1.1]:10129: Connection refused
root@pcl2-2288H-V5:/workspace/recommendation# python mnsit.py --init-method tcp://10.10.16.62:45795 --rank 0 --world-size 2
Traceback (most recent call last):
File "mnsit.py", line 43, in <module>
dist.init_process_group(init_method=args.init_method,backend="gloo",world_size=args.world_size,rank=args.rank,group_name="pytorch_test")
File "/opt/conda/lib/python3.6/site-packages/torch/distributed/distributed_c10d.py", line 416, in init_process_group
timeout=timeout)
File "/opt/conda/lib/python3.6/site-packages/torch/distributed/distributed_c10d.py", line 484, in _new_process_group_helper
timeout=timeout)
RuntimeError: [/pytorch/third_party/gloo/gloo/transport/tcp/pair.cc:760] connect [127.0.1.1]:39850: Connection refused