TypeError: cross_entropy_loss(): argument 'input' (position 1) must be Tensor, not tuple

    def __init__(self):
        super(CNNLenet, self).__init__()
        self.conv1 = nn. Sequential(        
            nn.Conv2d(1,16, 5,1,2),                                  
            nn.ReLU(),                      
            nn.MaxPool2d(2)   
            )
        self.conv2 = nn.Sequential(         
            nn.Conv2d(16, 32, 5, 1, 2),     
            nn.ReLU(),                      
            nn.MaxPool2d(2)                
        )
        # fully connected layer, output 10 classes
        self.fc1 = nn.Linear(32 * 7 * 7, 10)
    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        # flatten the output of conv2 to (batch_size, 32 * 7 * 7)
        x = x.view(x.size(0), -1)       
        output = self.fc1(x)
        return output, x    # return x for visualization

Here is optimization loop 

```for epoch in range(2):  # loop over the dataset multiple times

    running_loss = 0.0
    for i, data in enumerate(train_loader, 0):
        # get the inputs; data is a list of [inputs, labels]
        inputs, labels = data

        # zero the parameter gradients
        optimizer.zero_grad()

        # forward + backward + optimize
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        
        loss.backward()
        optimizer.step()

        # print statistics
        running_loss += loss.item()
        if i % 2000 == 1999:    # print every 2000 mini-batches
            print('[%d, %5d] loss: %.3f' %
                  (epoch + 1, i + 1, running_loss / 2000))
            running_loss = 0.0

print('Finished Training')

``` ---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-23-458279d9b112> in <module>
     11         # forward + backward + optimize
     12         outputs = model(inputs)
---> 13         loss = criterion(outputs, labels)
     14 
     15         loss.backward()

~\anaconda3\envs\deeplearning\lib\site-packages\torch\nn\modules\module.py in _call_impl(self, *input, **kwargs)
   1049         if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
   1050                 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1051             return forward_call(*input, **kwargs)
   1052         # Do not call functions when jit is used
   1053         full_backward_hooks, non_full_backward_hooks = [], []

~\anaconda3\envs\deeplearning\lib\site-packages\torch\nn\modules\loss.py in forward(self, input, target)
   1118 
   1119     def forward(self, input: Tensor, target: Tensor) -> Tensor:
-> 1120         return F.cross_entropy(input, target, weight=self.weight,
   1121                                ignore_index=self.ignore_index, reduction=self.reduction)
   1122 

~\anaconda3\envs\deeplearning\lib\site-packages\torch\nn\functional.py in cross_entropy(input, target, weight, size_average, ignore_index, reduce, reduction)
   2822     if size_average is not None or reduce is not None:
   2823         reduction = _Reduction.legacy_get_string(size_average, reduce)
-> 2824     return torch._C._nn.cross_entropy_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index)
   2825 
   2826 

TypeError: cross_entropy_loss(): argument 'input' (position 1) must be Tensor, not tuple

I am unable to understand this error. Kindly help me in understanding and resolving it.
3 Likes

The forward method of your model returns a tuple via:

return output, x    # return x for visualization

which creates the issue in loss = criterion(outputs, labels).
I assume you want to use output to calculate the loss, so use:

        output, x = model(inputs)
        loss = criterion(output, labels)

and it should work.

4 Likes

model_ft = models.inception_v3(pretrained=True)

add the following order

model_ft.aux_logits=False

Hi @ptrblck I got the same error using the code : share_to_resolve - Google Docs

return F.cross_entropy(input, target, weight=self.weight,

File “/home/charchit/miniconda3/envs/irt_project/lib/python3.9/site-packages/torch/nn/functional.py”, line 2996, in cross_entropy
return torch._C._nn.cross_entropy_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index, label_smoothing)
TypeError: cross_entropy_loss(): argument ‘input’ (position 1) must be Tensor, not tuple

Can you please help me here! @ptrblck

# coding=utf-8
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import copy
import logging
import math

from os.path import join as pjoin

import torch
import torch.nn as nn
import numpy as np

from torch.nn import CrossEntropyLoss, Dropout, Softmax, Linear, Conv2d, LayerNorm
from torch.nn.modules.utils import _pair
from scipy import ndimage

import models.configs as configs

from .modeling_resnet import ResNetV2


logger = logging.getLogger(__name__)


ATTENTION_Q = "MultiHeadDotProductAttention_1/query"
ATTENTION_K = "MultiHeadDotProductAttention_1/key"
ATTENTION_V = "MultiHeadDotProductAttention_1/value"
ATTENTION_OUT = "MultiHeadDotProductAttention_1/out"
FC_0 = "MlpBlock_3/Dense_0"
FC_1 = "MlpBlock_3/Dense_1"
ATTENTION_NORM = "LayerNorm_0"
MLP_NORM = "LayerNorm_2"


def np2th(weights, conv=False):
    """Possibly convert HWIO to OIHW."""
    if conv:
        weights = weights.transpose([3, 2, 0, 1])
    return torch.from_numpy(weights)


def swish(x):
    return x * torch.sigmoid(x)


ACT2FN = {"gelu": torch.nn.functional.gelu, "relu": torch.nn.functional.relu, "swish": swish}


class Attention(nn.Module):
    def __init__(self, config, vis):
        super(Attention, self).__init__()
        self.vis = vis
        self.num_attention_heads = config.transformer["num_heads"]
        self.attention_head_size = int(config.hidden_size / self.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = Linear(config.hidden_size, self.all_head_size)
        self.key = Linear(config.hidden_size, self.all_head_size)
        self.value = Linear(config.hidden_size, self.all_head_size)

        self.out = Linear(config.hidden_size, config.hidden_size)
        self.attn_dropout = Dropout(config.transformer["attention_dropout_rate"])
        self.proj_dropout = Dropout(config.transformer["attention_dropout_rate"])

        self.softmax = Softmax(dim=-1)

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(self, hidden_states):
        mixed_query_layer = self.query(hidden_states)
        mixed_key_layer = self.key(hidden_states)
        mixed_value_layer = self.value(hidden_states)

        query_layer = self.transpose_for_scores(mixed_query_layer)
        key_layer = self.transpose_for_scores(mixed_key_layer)
        value_layer = self.transpose_for_scores(mixed_value_layer)

        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        attention_probs = self.softmax(attention_scores)
        weights = attention_probs if self.vis else None
        attention_probs = self.attn_dropout(attention_probs)

        context_layer = torch.matmul(attention_probs, value_layer)
        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)
        attention_output = self.out(context_layer)
        attention_output = self.proj_dropout(attention_output)
        return attention_output, weights


class Mlp(nn.Module):
    def __init__(self, config):
        super(Mlp, self).__init__()
        self.fc1 = Linear(config.hidden_size, config.transformer["mlp_dim"])
        self.fc2 = Linear(config.transformer["mlp_dim"], config.hidden_size)
        self.act_fn = ACT2FN["gelu"]
        self.dropout = Dropout(config.transformer["dropout_rate"])

        self._init_weights()

    def _init_weights(self):
        nn.init.xavier_uniform_(self.fc1.weight)
        nn.init.xavier_uniform_(self.fc2.weight)
        nn.init.normal_(self.fc1.bias, std=1e-6)
        nn.init.normal_(self.fc2.bias, std=1e-6)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act_fn(x)
        x = self.dropout(x)
        x = self.fc2(x)
        x = self.dropout(x)
        return x


class Embeddings(nn.Module):
    """Construct the embeddings from patch, position embeddings.
    """
    def __init__(self, config, img_size, in_channels=3):
        super(Embeddings, self).__init__()
        self.hybrid = None
        img_size = _pair(img_size)

        if config.patches.get("grid") is not None:
            grid_size = config.patches["grid"]
            patch_size = (img_size[0] // 16 // grid_size[0], img_size[1] // 16 // grid_size[1])
            n_patches = (img_size[0] // 16) * (img_size[1] // 16)
            self.hybrid = True
        else:
            patch_size = _pair(config.patches["size"])
            n_patches = (img_size[0] // patch_size[0]) * (img_size[1] // patch_size[1])
            self.hybrid = False

        if self.hybrid:
            self.hybrid_model = ResNetV2(block_units=config.resnet.num_layers,
                                         width_factor=config.resnet.width_factor)
            in_channels = self.hybrid_model.width * 16
        self.patch_embeddings = Conv2d(in_channels=in_channels,
                                       out_channels=config.hidden_size,
                                       kernel_size=patch_size,
                                       stride=patch_size)
        self.position_embeddings = nn.Parameter(torch.zeros(1, n_patches+1, config.hidden_size))
        self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))

        self.dropout = Dropout(config.transformer["dropout_rate"])

    def forward(self, x):
        B = x.shape[0]
        cls_tokens = self.cls_token.expand(B, -1, -1)

        if self.hybrid:
            x = self.hybrid_model(x)
        x = self.patch_embeddings(x)
        x = x.flatten(2)
        x = x.transpose(-1, -2)
        x = torch.cat((cls_tokens, x), dim=1)

        embeddings = x + self.position_embeddings
        embeddings = self.dropout(embeddings)
        return embeddings


class Block(nn.Module):
    def __init__(self, config, vis):
        super(Block, self).__init__()
        self.hidden_size = config.hidden_size
        self.attention_norm = LayerNorm(config.hidden_size, eps=1e-6)
        self.ffn_norm = LayerNorm(config.hidden_size, eps=1e-6)
        self.ffn = Mlp(config)
        self.attn = Attention(config, vis)

    def forward(self, x):
        h = x
        x = self.attention_norm(x)
        x, weights = self.attn(x)
        x = x + h

        h = x
        x = self.ffn_norm(x)
        x = self.ffn(x)
        x = x + h
        return x, weights

    def load_from(self, weights, n_block):
        ROOT = f"Transformer/encoderblock_{n_block}"
        with torch.no_grad():
            query_weight = np2th(weights[pjoin(ROOT, ATTENTION_Q, "kernel")]).view(self.hidden_size, self.hidden_size).t()
            key_weight = np2th(weights[pjoin(ROOT, ATTENTION_K, "kernel")]).view(self.hidden_size, self.hidden_size).t()
            value_weight = np2th(weights[pjoin(ROOT, ATTENTION_V, "kernel")]).view(self.hidden_size, self.hidden_size).t()
            out_weight = np2th(weights[pjoin(ROOT, ATTENTION_OUT, "kernel")]).view(self.hidden_size, self.hidden_size).t()

            query_bias = np2th(weights[pjoin(ROOT, ATTENTION_Q, "bias")]).view(-1)
            key_bias = np2th(weights[pjoin(ROOT, ATTENTION_K, "bias")]).view(-1)
            value_bias = np2th(weights[pjoin(ROOT, ATTENTION_V, "bias")]).view(-1)
            out_bias = np2th(weights[pjoin(ROOT, ATTENTION_OUT, "bias")]).view(-1)

            self.attn.query.weight.copy_(query_weight)
            self.attn.key.weight.copy_(key_weight)
            self.attn.value.weight.copy_(value_weight)
            self.attn.out.weight.copy_(out_weight)
            self.attn.query.bias.copy_(query_bias)
            self.attn.key.bias.copy_(key_bias)
            self.attn.value.bias.copy_(value_bias)
            self.attn.out.bias.copy_(out_bias)

            mlp_weight_0 = np2th(weights[pjoin(ROOT, FC_0, "kernel")]).t()
            mlp_weight_1 = np2th(weights[pjoin(ROOT, FC_1, "kernel")]).t()
            mlp_bias_0 = np2th(weights[pjoin(ROOT, FC_0, "bias")]).t()
            mlp_bias_1 = np2th(weights[pjoin(ROOT, FC_1, "bias")]).t()

            self.ffn.fc1.weight.copy_(mlp_weight_0)
            self.ffn.fc2.weight.copy_(mlp_weight_1)
            self.ffn.fc1.bias.copy_(mlp_bias_0)
            self.ffn.fc2.bias.copy_(mlp_bias_1)

            self.attention_norm.weight.copy_(np2th(weights[pjoin(ROOT, ATTENTION_NORM, "scale")]))
            self.attention_norm.bias.copy_(np2th(weights[pjoin(ROOT, ATTENTION_NORM, "bias")]))
            self.ffn_norm.weight.copy_(np2th(weights[pjoin(ROOT, MLP_NORM, "scale")]))
            self.ffn_norm.bias.copy_(np2th(weights[pjoin(ROOT, MLP_NORM, "bias")]))


class Encoder(nn.Module):
    def __init__(self, config, vis):
        super(Encoder, self).__init__()
        self.vis = vis
        self.layer = nn.ModuleList()
        self.encoder_norm = LayerNorm(config.hidden_size, eps=1e-6)
        for _ in range(config.transformer["num_layers"]):
            layer = Block(config, vis)
            self.layer.append(copy.deepcopy(layer))

    def forward(self, hidden_states):
        attn_weights = []
        for layer_block in self.layer:
            hidden_states, weights = layer_block(hidden_states)
            if self.vis:
                attn_weights.append(weights)
        encoded = self.encoder_norm(hidden_states)
        return encoded, attn_weights


class Transformer(nn.Module):
    def __init__(self, config, img_size, vis):
        super(Transformer, self).__init__()
        self.embeddings = Embeddings(config, img_size=img_size)
        self.encoder = Encoder(config, vis)

    def forward(self, input_ids):
        embedding_output = self.embeddings(input_ids)
        encoded, attn_weights = self.encoder(embedding_output)
        return encoded, attn_weights


class VisionTransformer(nn.Module):
    def __init__(self, config, img_size=224, num_classes=21843, zero_head=False, vis=False):
        super(VisionTransformer, self).__init__()
        self.num_classes = num_classes
        self.zero_head = zero_head
        self.classifier = config.classifier

        self.transformer = Transformer(config, img_size, vis)
        self.head = Linear(config.hidden_size, num_classes)

    def forward(self, x, labels=None):
        x, attn_weights = self.transformer(x)
        logits = self.head(x[:, 0])

        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(logits.view(-1, self.num_classes), labels.view(-1))
            return loss
        else:
            print("In forward else")
            return logits, attn_weights

    def load_from(self, weights):
        with torch.no_grad():
            if self.zero_head:
                nn.init.zeros_(self.head.weight)
                nn.init.zeros_(self.head.bias)
            else:
                self.head.weight.copy_(np2th(weights["head/kernel"]).t())
                self.head.bias.copy_(np2th(weights["head/bias"]).t())

            self.transformer.embeddings.patch_embeddings.weight.copy_(np2th(weights["embedding/kernel"], conv=True))

class VisionTransformer(nn.Module):
    def __init__(self, config, img_size=224, num_classes=21843, zero_head=False, vis=False):
        super(VisionTransformer, self).__init__()
        self.num_classes = num_classes
        self.zero_head = zero_head
        self.classifier = config.classifier

        self.transformer = Transformer(config, img_size, vis)
        self.head = Linear(config.hidden_size, num_classes)

    def forward(self, x, labels=None):
        x, attn_weights = self.transformer(x)
        logits = self.head(x[:, 0])

        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(logits.view(-1, self.num_classes), labels.view(-1))
            return loss
        else:
            print("In forward else")
            return logits, attn_weights
````Preformatted text`


Is the issue because I need to only work with logits. So, in outputs[0] is okay. I am confused@ptrblck

I don’t know which output you are using in the loss calculation, but as the error states a tensor is expected as the input argument (i.e. your model output) while a tuple is passed.

1 Like