Typehint in documentation does not match with LSP diagnostics

Hi, Everyone. I’m not exactly sure if it is a bug or a skill issue. Please take a look at the following code.

import torch
import torch.nn.functional as F

def myfunc(theta: torch.Tensor, grid_size: torch.Size):
    result_grid = F.affine_grid(theta, grid_size)

This function call to affine_grid raise type issue, stating that argument of type “Size” cannot be assigned to parameter size of type “List[int]”. However, according to the documentation of affine_grid, the size parameter expects type torch.Size

below is my environment

PyTorch version: 2.1.2
Is debug build: False
CUDA used to build PyTorch: 11.8
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.2 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: 14.0.0-1ubuntu1.1
CMake version: version 3.14.0
Libc version: glibc-2.35

Python version: 3.9.18 (main, Sep 11 2023, 13:41:44)  [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-
Is CUDA available: True
CUDA runtime version: Could not collect
GPU models and configuration: GPU 0: NVIDIA GeForce RTX 4090
Nvidia driver version: 537.58
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

Architecture:                       x86_64
CPU op-mode(s):                     32-bit, 64-bit
Address sizes:                      48 bits physical, 48 bits virtual
Byte Order:                         Little Endian
CPU(s):                             24
On-line CPU(s) list:                0-23
Vendor ID:                          AuthenticAMD
Model name:                         AMD Ryzen 9 5900X 12-Core Processor
CPU family:                         25
Model:                              33
Thread(s) per core:                 2
Core(s) per socket:                 12
Socket(s):                          1
Stepping:                           0
BogoMIPS:                           7400.08
Flags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy svm cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr arat npt nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload umip vaes vpclmulqdq rdpid fsrm
Virtualization:                     AMD-V
Hypervisor vendor:                  Microsoft
Virtualization type:                full
L1d cache:                          384 KiB (12 instances)
L1i cache:                          384 KiB (12 instances)
L2 cache:                           6 MiB (12 instances)
L3 cache:                           32 MiB (1 instance)
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit:        Not affected
Vulnerability L1tf:                 Not affected
Vulnerability Mds:                  Not affected
Vulnerability Meltdown:             Not affected
Vulnerability Mmio stale data:      Not affected
Vulnerability Retbleed:             Not affected
Vulnerability Spec rstack overflow: Mitigation; safe RET, no microcode
Vulnerability Spec store bypass:    Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:           Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP conditional, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Not affected

Versions of relevant libraries:
[pip3] flake8==6.1.0
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.24.4
[pip3] numpy-quaternion==2023.0.2
[pip3] torch==2.1.2
[pip3] torchaudio==2.1.2
[pip3] torchvision==0.16.2
[pip3] triton==2.1.0
[conda] blas                      1.0                         mkl  
[conda] libblas                   3.9.0            16_linux64_mkl    conda-forge
[conda] libcblas                  3.9.0            16_linux64_mkl    conda-forge
[conda] libjpeg-turbo             2.0.0                h9bf148f_0    pytorch
[conda] liblapack                 3.9.0            16_linux64_mkl    conda-forge
[conda] mkl                       2022.1.0           hc2b9512_224  
[conda] numpy                     1.26.2                   pypi_0    pypi
[conda] pytorch                   2.1.2           py3.9_cuda11.8_cudnn8.7.0_0    pytorch
[conda] pytorch-cuda              11.8                 h7e8668a_5    pytorch
[conda] pytorch-mutex             1.0                        cuda    pytorch
[conda] torchaudio                2.1.2                py39_cu118    pytorch
[conda] torchtriton               2.1.0                      py39    pytorch
[conda] torchvision               0.16.2               py39_cu118    pytorch