Hi, Everyone. I’m not exactly sure if it is a bug or a skill issue. Please take a look at the following code.
import torch
import torch.nn.functional as F
def myfunc(theta: torch.Tensor, grid_size: torch.Size):
...
result_grid = F.affine_grid(theta, grid_size)
...
This function call to affine_grid raise type issue, stating that argument of type “Size” cannot be assigned to parameter size of type “List[int]”. However, according to the documentation of affine_grid, the size parameter expects type torch.Size
below is my environment
PyTorch version: 2.1.2
Is debug build: False
CUDA used to build PyTorch: 11.8
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.2 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: 14.0.0-1ubuntu1.1
CMake version: version 3.14.0
Libc version: glibc-2.35
Python version: 3.9.18 (main, Sep 11 2023, 13:41:44) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.133.1-microsoft-standard-WSL2-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: NVIDIA GeForce RTX 4090
Nvidia driver version: 537.58
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 48 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 24
On-line CPU(s) list: 0-23
Vendor ID: AuthenticAMD
Model name: AMD Ryzen 9 5900X 12-Core Processor
CPU family: 25
Model: 33
Thread(s) per core: 2
Core(s) per socket: 12
Socket(s): 1
Stepping: 0
BogoMIPS: 7400.08
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy svm cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr arat npt nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload umip vaes vpclmulqdq rdpid fsrm
Virtualization: AMD-V
Hypervisor vendor: Microsoft
Virtualization type: full
L1d cache: 384 KiB (12 instances)
L1i cache: 384 KiB (12 instances)
L2 cache: 6 MiB (12 instances)
L3 cache: 32 MiB (1 instance)
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Mitigation; safe RET, no microcode
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP conditional, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] flake8==6.1.0
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.24.4
[pip3] numpy-quaternion==2023.0.2
[pip3] torch==2.1.2
[pip3] torchaudio==2.1.2
[pip3] torchvision==0.16.2
[pip3] triton==2.1.0
[conda] blas 1.0 mkl
[conda] libblas 3.9.0 16_linux64_mkl conda-forge
[conda] libcblas 3.9.0 16_linux64_mkl conda-forge
[conda] libjpeg-turbo 2.0.0 h9bf148f_0 pytorch
[conda] liblapack 3.9.0 16_linux64_mkl conda-forge
[conda] mkl 2022.1.0 hc2b9512_224
[conda] numpy 1.26.2 pypi_0 pypi
[conda] pytorch 2.1.2 py3.9_cuda11.8_cudnn8.7.0_0 pytorch
[conda] pytorch-cuda 11.8 h7e8668a_5 pytorch
[conda] pytorch-mutex 1.0 cuda pytorch
[conda] torchaudio 2.1.2 py39_cu118 pytorch
[conda] torchtriton 2.1.0 py39 pytorch
[conda] torchvision 0.16.2 py39_cu118 pytorch