Using at::parallel_for in a custom operator

Hi,

I am trying to use at::parallel_for to parallelize computations over the batch dimension of a tensor but I cannot manage to compile the code (tested with clang on osX, pytorch v1.5.0).

Here is a minimal example:

x2.cpp:

#include <torch/extension.h>
#include <iostream>

#include <ATen/ATen.h>

torch::Tensor x2(torch::Tensor z) {
  torch::Tensor z_out = at::empty({z.size(0), z.size(1)}, z.options());
  int64_t batch_size = z.size(0); 

  at::parallel_for(0, batch_size, 0, [&](int64_t start, int64_t end) {
    for (int64_t b = start; b < end; b++) {
      z_out[b] = z[b] * z[b];
    }
  });

  return z_out;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
  m.def("x2", &x2, "square");
}

setup.py:

from setuptools import setup, Extension
from torch.utils import cpp_extension

setup(name='x2_cpp',
      ext_modules=[cpp_extension.CppExtension('x2_cpp', ['x2.cpp'])],
      cmdclass={'build_ext': cpp_extension.BuildExtension})

Extension(
   name='x2_cpp',
   sources=['x2.cpp'],
   include_dirs=cpp_extension.include_paths(),
   language='c++')

Then running the command:

python setup.py install

I get:

In file included from x2.cpp:1:
In file included from /Users/thierry/env/def/lib/python3.7/site-packages/torch/include/torch/extension.h:4:
In file included from /Users/thierry/env/def/lib/python3.7/site-packages/torch/include/torch/csrc/api/include/torch/all.h:7:
In file included from /Users/thierry/env/def/lib/python3.7/site-packages/torch/include/torch/csrc/api/include/torch/nn.h:3:
In file included from /Users/thierry/env/def/lib/python3.7/site-packages/torch/include/torch/csrc/api/include/torch/nn/cloneable.h:5:
In file included from /Users/thierry/env/def/lib/python3.7/site-packages/torch/include/torch/csrc/api/include/torch/utils.h:3:
/Users/thierry/env/def/lib/python3.7/site-packages/torch/include/ATen/Parallel.h:53:13: error: function 'at::parallel_for<(lambda at x2.cpp:10:38)>' is used but not defined in this translation unit, and
      cannot be defined in any other translation unit because its type does not have linkage
inline void parallel_for(
            ^
x2.cpp:10:7: note: used here
  at::parallel_for(0, batch_size, 0, [&](int64_t start, int64_t end) {
      ^
1 error generated.
1 Like

cc @VitalyFedyunin do you know why this happens by any chance? Is it a problem on how we define the cpp extensions?

Hi, I have tried directly use parallel_for in ATen/ParallelOpenMP.h. Works for me. You can try this if you want to use OpenMP parallel, just specify your compiler extra_compile_args with -fopenmp and extra_link_args with -lgomp.

Hi,

did you manage to use it from an external module (i.e. not from within ATen itself, but using the code I gave as an example) ? The translation unit issue should indeed not arise from within the library …

Adding openMP flags does not change the issue in my case (neither on OSX nor on linux).

By the way, I noticed the setup.py file was not properly written, here is a better version:

from setuptools import setup, Extension
from torch.utils import cpp_extension

cpp_module = cpp_extension.CppExtension('x2_cpp',
                                        sources=['x2.cpp'],
                                        extra_compile_args=[],
                                        extra_link_args=[]
                                        )

setup(name='x2_cpp',
      ext_modules=[cpp_module],
      cmdclass={'build_ext': cpp_extension.BuildExtension})

x2.cpp

#include <torch/extension.h>
#include <iostream>

#define _OPENMP
#include <ATen/ParallelOpenMP.h>

torch::Tensor x2(torch::Tensor z)
{
    torch::Tensor z_out = at::empty({z.size(0), z.size(1)}, z.options());
    int64_t batch_size = z.size(0);

    at::parallel_for(0, batch_size, 0, [&](int64_t start, int64_t end) {
        for (int64_t b = start; b < end; b++)
        {
            z_out[b] = z[b] * z[b];
        }
        std::cout << "hi there from " << omp_get_thread_num() << std::endl;
    });

    return z_out;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
{
    m.def("x2", &x2, "square");
}

setup.py

from setuptools import setup, Extension
from torch.utils import cpp_extension

cpp_module = cpp_extension.CppExtension('x2_cpp',
                                        sources=['x2.cpp'],
                                        extra_compile_args=['-fopenmp'],
                                        extra_link_args=['-lgomp']
                                        )

setup(name='x2_cpp',
      ext_modules=[cpp_module],
      cmdclass={'build_ext': cpp_extension.BuildExtension})

python setup.py install
build output:

running install
running bdist_egg
running egg_info
writing x2_cpp.egg-info/PKG-INFO
writing dependency_links to x2_cpp.egg-info/dependency_links.txt
writing top-level names to x2_cpp.egg-info/top_level.txt
reading manifest file 'x2_cpp.egg-info/SOURCES.txt'
writing manifest file 'x2_cpp.egg-info/SOURCES.txt'
installing library code to build/bdist.linux-x86_64/egg
running install_lib
running build_ext
building 'x2_cpp' extension
Emitting ninja build file *my_path :)*/x2_cpp/build/temp.linux-x86_64-3.7/build.ninja...
Compiling objects...
Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N)
[1/1] c++ -MMD -MF my_path/x2_cpp/build/temp.linux-x86_64-3.7/x2.o.d -pthread -B my_path/anaconda3/envs/PyTorch/compiler_compat -Wl,--sysroot=/ -Wsign-compare -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -fPIC -I/home/my_path/anaconda3/envs/PyTorch/lib/python3.7/site-packages/torch/include -I/home/my_path/anaconda3/envs/PyTorch/lib/python3.7/site-packages/torch/include/torch/csrc/api/include -I/home/my_path/anaconda3/envs/PyTorch/lib/python3.7/site-packages/torch/include/TH -I/home/my_path/anaconda3/envs/PyTorch/lib/python3.7/site-packages/torch/include/THC -I/home/my_path/anaconda3/envs/PyTorch/include/python3.7m -c -c /home/my_path/workspace/MotionSparsity/MSBackEnd/x2_cpp/x2.cpp -o /home/my_path/workspace/MotionSparsity/MSBackEnd/x2_cpp/build/temp.linux-x86_64-3.7/x2.o -fopenmp -DTORCH_API_INCLUDE_EXTENSION_H -DTORCH_EXTENSION_NAME=x2_cpp -D_GLIBCXX_USE_CXX11_ABI=0 -std=c++14
cc1plus: warning: command line option ‘-Wstrict-prototypes’ is valid for C/ObjC but not for C++
g++ -pthread -shared -B /home/my_path/anaconda3/envs/PyTorch/compiler_compat -L/home/my_path/anaconda3/envs/PyTorch/lib -Wl,-rpath=/home/my_path/anaconda3/envs/PyTorch/lib -Wl,--no-as-needed -Wl,--sysroot=/ /home/my_path/workspace/MotionSparsity/MSBackEnd/x2_cpp/build/temp.linux-x86_64-3.7/x2.o -L/home/my_path/anaconda3/envs/PyTorch/lib/python3.7/site-packages/torch/lib -lc10 -ltorch -ltorch_cpu -ltorch_python -o build/lib.linux-x86_64-3.7/x2_cpp.cpython-37m-x86_64-linux-gnu.so -lgomp
creating build/bdist.linux-x86_64/egg
copying build/lib.linux-x86_64-3.7/x2_cpp.cpython-37m-x86_64-linux-gnu.so -> build/bdist.linux-x86_64/egg
creating stub loader for x2_cpp.cpython-37m-x86_64-linux-gnu.so
byte-compiling build/bdist.linux-x86_64/egg/x2_cpp.py to x2_cpp.cpython-37.pyc
creating build/bdist.linux-x86_64/egg/EGG-INFO
copying x2_cpp.egg-info/PKG-INFO -> build/bdist.linux-x86_64/egg/EGG-INFO
copying x2_cpp.egg-info/SOURCES.txt -> build/bdist.linux-x86_64/egg/EGG-INFO
copying x2_cpp.egg-info/dependency_links.txt -> build/bdist.linux-x86_64/egg/EGG-INFO
copying x2_cpp.egg-info/top_level.txt -> build/bdist.linux-x86_64/egg/EGG-INFO
writing build/bdist.linux-x86_64/egg/EGG-INFO/native_libs.txt
zip_safe flag not set; analyzing archive contents...
__pycache__.x2_cpp.cpython-37: module references __file__
creating 'dist/x2_cpp-0.0.0-py3.7-linux-x86_64.egg' and adding 'build/bdist.linux-x86_64/egg' to it
removing 'build/bdist.linux-x86_64/egg' (and everything under it)
Processing x2_cpp-0.0.0-py3.7-linux-x86_64.egg
removing '/home/my_path/anaconda3/envs/PyTorch/lib/python3.7/site-packages/x2_cpp-0.0.0-py3.7-linux-x86_64.egg' (and everything under it)
creating /home/my_path/anaconda3/envs/PyTorch/lib/python3.7/site-packages/x2_cpp-0.0.0-py3.7-linux-x86_64.egg
Extracting x2_cpp-0.0.0-py3.7-linux-x86_64.egg to /home/my_path/anaconda3/envs/PyTorch/lib/python3.7/site-packages
x2-cpp 0.0.0 is already the active version in easy-install.pth

Installed /home/my_path/anaconda3/envs/PyTorch/lib/python3.7/site-packages/x2_cpp-0.0.0-py3.7-linux-x86_64.egg
Processing dependencies for x2-cpp==0.0.0
Finished processing dependencies for x2-cpp==0.0.0

test.py

import torch
import x2_cpp

a = torch.rand((2, 2))
print(a)
print(x2_cpp.x2(a))

output:

tensor([[0.6516, 0.4836],
        [0.8497, 0.2106]])
hi there from 0
hi there from 1
tensor([[0.4246, 0.2338],
        [0.7220, 0.0444]])

Maybe it’s an ugly way to use this, but it does work.

2 Likes

Indeed it does work, thanks a lot !

I guess I was hoping for something that would automatically select a parallelization library for me depending on how pytorch was compiled, but that’ s good enough for me.

On a side note, I tried including ATen/ParallelNative.h instead of ATen/ParallelOpenMP.h, and got the code to compile, but then I get a:

ImportError: /storage/code/debug/x2_cpp.cpython-37m-x86_64-linux-gnu.so: undefined symbol: _ZN2at8internal13_parallel_runElllRKSt8functionIFvllmEE
1 Like

Hi @thierry, @Kaii - I got curious while reading this post/replies and played around with at::parallel_for.
The issue as I understand it is that different parallel backends require different compiler arguments and CppExtension does not set them up automatically.
As an experiment I wrote a wrapper for CppExtension that extracts the parallel backend from torch (from torch.config.parallel_info() ) and then adds the required, backed specific compiler arguments (only tested on Ubuntu 18.04 image produced from pytorch/Dockerfile).
I then used the setup to write a simple test for at::parallel_for to measure the concurrency given a at::parallel_for range. (Using the backend agnostic ATen/Parallel.h header file)

Code is on: github

Example desktop:

>>> import torch
>>> import parallel_extension_cpp
>>> parallel_extension_cpp.concurrency_test(21)
11
>>> parallel_extension_cpp.concurrency_test(128)
16
>>> parallel_extension_cpp.concurrency_test(99)
15
>>> parallel_extension_cpp.concurrency_test(150)
15
>>> parallel_extension_cpp.concurrency_test(151)
16
>>> 

Example laptop:

import torch
>>> import parallel_extension_cpp
>>> parallel_extension_cpp.concurrency_test(10)
5
>>> parallel_extension_cpp.concurrency_test(11)
6
>>> parallel_extension_cpp.concurrency_test(25)
5
>>> parallel_extension_cpp.concurrency_test(1000)
6
>>> parallel_extension_cpp.concurrency_test(8)
4
3 Likes