ValueError: Expected input batch_size (1) to match target batch_size (0)

I get the following error while implementing an lstm model. I have 4 target classes. How can I resolve this. Thanks

input shape:torch.Size([1, 330, 41])
target shape:torch.Size([1])
Lstm predictions are: tensor([[-0.6972, 0.5255, 0.0473, -0.0499]], grad_fn=)

import torchmetrics
# We have 4 classes
TOT_ACTION_CLASSES = 4

#lstm classifier definition
class ActionClassificationLSTM(pl.LightningModule):

	# initialise method
	def __init__(self, input_features, hidden_dim, learning_rate=0.001):
	    super().__init__()
	    # save hyperparameters
	    self.save_hyperparameters()
	    # The LSTM takes word embeddings as inputs, and outputs hidden states
	    # with dimensionality hidden_dim.
	    self.lstm = nn.LSTM(input_features, 
		                    hidden_dim,
							batch_first=True)
	    # The linear layer that maps from hidden state space to classes
	    self.linear = nn.Linear(hidden_dim,
		                        TOT_ACTION_CLASSES)

	def forward(self, x):
	    # invoke lstm layer
	    lstm_out, (ht, ct) = self.lstm(x)
	    # invoke linear layer
	    return self.linear(ht[-1])

	def training_step(self, batch, batch_idx):
			# get data and labels from batch
			x, y = batch["sequences"], batch["label"]
			# reduce dimension
			y = torch.squeeze(y)
			# convert to long
			y = y.long()
			# get prediction
			y_pred = self(x)
			# calculate loss
			loss = F.cross_entropy(y_pred, y)
			# get probability score using softmax
			prob = F.softmax(y_pred, dim=1)
			# get the index of the max probability
			pred = prob.data.max(dim=1)[1]
			# calculate accuracy
			acc = torchmetrics.functional.accuracy(pred, y)
			dic = {
				'batch_train_loss': loss,
				'batch_train_acc': acc
			}
			# log the metrics for pytorch lightning progress bar or any other operations
			self.log('batch_train_loss', loss, prog_bar=True)
			self.log('batch_train_acc', acc, prog_bar=True)
			#return loss and dict
			return {'loss': loss, 'result': dic}

	def training_epoch_end(self, training_step_outputs):
		# calculate average training loss end of the epoch
		avg_train_loss = torch.tensor([x['result']['batch_train_loss'] for x in training_step_outputs]).mean()
		# calculate average training accuracy end of the epoch
		avg_train_acc = torch.tensor([x['result']['batch_train_acc'] for x in training_step_outputs]).mean()
		# log the metrics for pytorch lightning progress bar and any further processing
		self.log('train_loss', avg_train_loss, prog_bar=True)
		self.log('train_acc', avg_train_acc, prog_bar=True)

	def validation_step(self, batch, batch_idx):
		# get data and labels from batch
		x, y = batch["sequences"], batch["label"]
		# reduce dimension
		y =  torch.squeeze(y)
		# convert to long
		y = y.long()
		# get prediction
		y_pred = self(x)
	
		# calculate loss
		loss = F.cross_entropy(y_pred, y)
		# get probability score using softmax
		prob = F.softmax(y_pred, dim=1)
		# get the index of the max probability
		pred = prob.data.max(dim=1)[1]
		# calculate accuracy
		acc = torchmetrics.functional.accuracy(pred, y)
		dic = {
			'batch_val_loss': loss,
			'batch_val_acc': acc
		}
		# log the metrics for pytorch lightning progress bar and any further processing
		self.log('batch_val_loss', loss, prog_bar=True)
		self.log('batch_val_acc', acc, prog_bar=True)
		#return dict
		return dic

	def validation_epoch_end(self, validation_step_outputs):
		# calculate average validation loss end of the epoch
		avg_val_loss = torch.tensor([x['batch_val_loss']
									for x in validation_step_outputs]).mean()
		# calculate average validation accuracy end of the epoch
		avg_val_acc = torch.tensor([x['batch_val_acc']
									for x in validation_step_outputs]).mean()
		# log the metrics for pytorch lightning progress bar and any further processing
		self.log('val_loss', avg_val_loss, prog_bar=True)
		self.log('val_acc', avg_val_acc, prog_bar=True)

	def configure_optimizers(self):
		# adam optimiser
		optimizer = torch.optim.Adam(self.parameters(), lr=self.hparams.learning_rate)
		# learning rate reducer scheduler
		scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=10, min_lr=1e-15, verbose=True)
		# scheduler reduces learning rate based on the value of val_loss metric
		return {"optimizer": optimizer,
				"lr_scheduler": {"scheduler": scheduler, "interval": "epoch", "frequency": 1, "monitor": "val_loss"}}

@Mukesh1729

You need to comment out y = torch.squeeze(y) in the below lines

x, y = batch["sequences"], batch["label"]
# reduce dimension
y =  torch.squeeze(y)
# convert to long
y = y.long()

Hey thanks for getting back:
I tried that earlier but i get this error

IndexError: Target 4 is out of bounds.

@Mukesh1729 if that is the case then it means that your model should have 5 classes

Assign this
TOT_ACTION_CLASSES = 5

Thanks for the help. It worked