Visualize feature map

  1. You can just use a plot library like matplotlib to visualize the output.

  2. Sure! You could use some loss function like nn.BCELoss as your criterion to reconstruct the images.

  3. Forward hooks are a good choice to get the activation map for a certain input.

Here is a small code example as a starter:

import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import DataLoader

import torchvision.transforms as transforms
import torchvision.datasets as datasets

import matplotlib.pyplot as plt


class MyModel(nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.conv1 = nn.Conv2d(1, 3, 3, 1, 1)
        self.pool1 = nn.MaxPool2d(2)
        self.conv2 = nn.Conv2d(3, 6, 3, 1, 1)
        self.pool2 = nn.MaxPool2d(2)
        
        self.conv_trans1 = nn.ConvTranspose2d(6, 3, 4, 2, 1)
        self.conv_trans2 = nn.ConvTranspose2d(3, 1, 4, 2, 1)
        
    def forward(self, x):
        x = F.relu(self.pool1(self.conv1(x)))
        x = F.relu(self.pool2(self.conv2(x)))        
        x = F.relu(self.conv_trans1(x))
        x = self.conv_trans2(x)
        return x

dataset = datasets.MNIST(
    root='PATH',
    transform=transforms.ToTensor()
)
loader = DataLoader(
    dataset,
    num_workers=2,
    batch_size=8,
    shuffle=True
)

model = MyModel()
criterion = nn.BCEWithLogitsLoss()
optimizer = optim.Adam(model.parameters(), lr=1e-3)

epochs = 1
for epoch in range(epochs):
    for batch_idx, (data, target) in enumerate(loader):
        optimizer.zero_grad()
        output = model(data)
        loss = criterion(output, data)
        loss.backward()
        optimizer.step()
        
        print('Epoch {}, Batch idx {}, loss {}'.format(
            epoch, batch_idx, loss.item()))


def normalize_output(img):
    img = img - img.min()
    img = img / img.max()
    return img

# Plot some images
idx = torch.randint(0, output.size(0), ())
pred = normalize_output(output[idx, 0])
img = data[idx, 0]

fig, axarr = plt.subplots(1, 2)
axarr[0].imshow(img.detach().numpy())
axarr[1].imshow(pred.detach().numpy())

# Visualize feature maps
activation = {}
def get_activation(name):
    def hook(model, input, output):
        activation[name] = output.detach()
    return hook

model.conv1.register_forward_hook(get_activation('conv1'))
data, _ = dataset[0]
data.unsqueeze_(0)
output = model(data)

act = activation['conv1'].squeeze()
fig, axarr = plt.subplots(act.size(0))
for idx in range(act.size(0)):
    axarr[idx].imshow(act[idx])
46 Likes