Why charater based LSTM are taking more time than word based LSTM while next word prediction

I wanted to train LSTM Model for Next Word Prediction using word-based and character based. I used similar data processing technique for both character-based and word-based.

For Character,

class TextDataset(Dataset):
    def __init__(self, text, sequence_length):
        self.text = text
        self.sequence_length = sequence_length
        self.text_length = len(text) - sequence_length

    def __len__(self):
        return self.text_length

    def __getitem__(self, idx):
        seq = self.text[idx: idx + self.sequence_length]
        next_char = self.text[idx + self.sequence_length]
        return torch.tensor(seq['tokens'], dtype=torch.long), torch.tensor(next_char['tokens'], dtype=torch.long)

sequence_length = 20
train_data = TextDataset(tokenized_dataset['train'], sequence_length)
valid_data = TextDataset(tokenized_dataset['valid'], sequence_length)
test_data = TextDataset(tokenized_dataset['test'], sequence_length)
train_dataloader = DataLoader(train_data, batch_size=1024, shuffle=False)
valid_dataloader = DataLoader(valid_data, batch_size=1024, shuffle=False)
test_dataloader = DataLoader(test_data, batch_size=1024, shuffle=False)

For Word-based, I took word instead of Character.

Here is my LSTM model,

class LSTMModel(nn.Module):
    def __init__(self, vocab_size, embedding_dim, hidden_dim, n_layers, dropout_rate):
        super(LSTMModel, self).__init__()
        self.num_layers = n_layers
        self.hidden_dim = hidden_dim
        self.embedding_dim = embedding_dim
        self.dropout = nn.Dropout(dropout_rate)
        self.embedding = nn.Embedding(vocab_size, embedding_dim)
        self.lstm = nn.LSTM(embedding_dim, hidden_dim, num_layers=n_layers, dropout=dropout_rate, batch_first=True)
        self.fc = nn.Linear(hidden_dim, vocab_size)

    def forward(self, x, hidden):
        x = self.embedding(x)
        # x = x.view(self.sequence_length, -1, self.hidden_dim)
        # print(x.shape)
        out, hidden = self.lstm(x, hidden)
        out = self.dropout(out)
        out = self.fc(out[:,-1])
        return out, hidden

    # def init_hidden(self, batch_size):
    #     return (torch.zeros(1, batch_size, self.hidden_dim),
    #             torch.zeros(1, batch_size, self.hidden_dim))

    def init_hidden(self, batch_size, device):
        hidden = torch.zeros(self.num_layers, batch_size, self.hidden_dim).to(device)
        cell = torch.zeros(self.num_layers, batch_size, self.hidden_dim).to(device)
        return hidden, cell

    def detach_hidden(self, hidden):
        hidden, cell = hidden
        hidden = hidden.detach()
        cell = cell.detach()
        return hidden, cell

Training Step:

for epoch in range(n_epochs):

    for inputs, targets in tqdm(train_dataloader):
        hidden = model.init_hidden(inputs.shape[0], device)
        inputs, targets = inputs.to(device), targets.to(device)
        output, hidden = model(inputs, hidden)
        loss = criterion(output, targets)

    print(f"Epoch {epoch+1}/{n_epochs}, Loss: {loss.item()}")

My Question is, Why Character-based training takes much longer time than Word-based training?