Will torchrun --nnodes=1 --nproc_per_node=2 utilize 2 gpu in my PC?

Hi, I have node with 2 gpu on it, assume that I have a following code :

from torch.nn.parallel import DistributedDataParallel as DDP
import torch.distributed as dist
from torch.utils.data.distributed import DistributedSampler

dist.init_process_group("nccl")

local_rank = int(os.environ["LOCAL_RANK"])
global_rank = int(os.environ["RANK"])

BATCH_SIZE = 256 // int(os.environ["WORLD_SIZE"])
EPOCHS = 5
WORKERS = 48
IMG_DIMS = (336, 336)
CLASSES = 10

MODEL_NAME = 'resnet50d'

transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Resize(IMG_DIMS),
])

data = torchvision.datasets.CIFAR10('./',
                                    train=True,
                                    download=True,
                                    transform=transform)
sampler = DistributedSampler(data)
data_loader = torch.utils.data.DataLoader(data,
                                          batch_size=BATCH_SIZE,
                                          shuffle=False,
                                          sampler=sampler,
                                          num_workers=WORKERS)

torch.cuda.set_device(local_rank)
torch.cuda.empty_cache()
model = timm.create_model(MODEL_NAME, pretrained=True, num_classes=CLASSES)

model = model.to('cuda:' + str(local_rank))
model = DDP(model, device_ids=[local_rank])

loss_fn = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.01)

start = time.perf_counter()
for epoch in range(EPOCHS):
    epoch_start_time = time.perf_counter()

    model.train()
    for batch in tqdm(data_loader, total=len(data_loader)):
        features, labels = batch[0].to(local_rank), batch[1].to(local_rank)

        optimizer.zero_grad()

        preds = model(features)
        loss = loss_fn(preds, labels)

        loss.backward()
        optimizer.step()

    epoch_end_time = time.perf_counter()
    if global_rank == 0:
        print(f"Epoch {epoch+1} Time", epoch_end_time - epoch_start_time)
end = time.perf_counter()
if global_rank == 0:
    print("Training Took", end - start)

To execute, I run torchrun --nnodes=1 --nproc_per_node=2, how can we ensure that each gpu will run exactly one process but not one gpu run concurrently two process. Does pytorch automatically do it?

The GPU won’t run a process but processes can use GPUs.
The standard approach for DDP is to use a single GPU per process, but there are other use cases where multiple GPUs are used in a single process (e.g. think about naive pipeline parallel approaches).
You could try to make a single GPU visible in the process via CUDA_VISIBLE_DEVICES disallowing this process to see any other GPU.

1 Like