Goal
Run PatchCore (FAISS + PyTorch) with DDP on Windows using python -m torch.distributed.run --nproc_per_node=2.
Command
set USE_LIBUV=0 && set MASTER_ADDR=127.0.0.1 && set MASTER_PORT=29500 ^
&& python -m torch.distributed.run --nproc_per_node=2 train_tuple.py --ddp --use_gpu
(Also tried torchrun alias, same result.)
Error (excerpt)
torch.distributed.DistStoreError: use_libuv was requested but PyTorch was built without libuv support, run with USE_LIBUV
System & environment
OS / GPU
-
Windows 10/11 (x64)
-
(RTX 5090) — Driver version: (please advise if you need exact
nvidia-smioutput; can share)
Python
python 3.11.14
PyTorch / CUDA / FAISS (conda + pip mix)
torch 2.10.0.dev20251022+cu128 (pip)
torchvision 0.25.0.dev20251022+cu128 (pip)
torchaudio 2.10.0.dev20251022+cu128 (pip))
faiss 1.9.0 py311cuda126... (conda-forge)
faiss-gpu 1.9.0 ... (conda-forge)
cuda-toolkit 12.8.0 (conda, NVIDIA label)
cudnn 9.13.1 (conda-forge)
the error message specifically complains about libuv rendezvous.
Things I already tried
-
Setting
USE_LIBUV=0in the shell and at the very top of the script (before anytorchimport). -
Explicit
backend="gloo"ininit_process_group. -
Using
python -m torch.distributed.runvstorchrun. -
Ensuring
MASTER_ADDR/MASTER_PORTare set and free. -
Verifying single-process execution works.
-
Verified that
os.environ["USE_LIBUV"]prints0inside the script right before importingtorch.distributed. -
I have looked into all the forums and tried various version of nightly and different suggested combinations of torch and cuda the error still remain.
Questions for the community
-
Is libuv rendezvous expected/required on current PyTorch nightlies for Windows, or should
USE_LIBUV=0fully disable it? -
What’s the recommended, known-good install matrix for:
-
Windows + CUDA 12.6/12.8
-
PyTorch (stable/nightly) + torchvision/torchaudio
-
FAISS (GPU)
so that DDP (gloo backend) works withnproc_per_node>1?
-
-
If libuv rendezvous is the intended default on Windows nightlies, how do I force TCPStore/gloo without libuv, or how do I install a libuv-enabled/non-libuv PyTorch build for Windows?
-
Any guidance on FAISS build compatibility with the above stack on Windows would also be appreciated (I’m fine to re-create a clean env).
What works vs fails (using the same exact code base)
-
RTX 4090 — OK (DDP with nproc_per_node=2) -
RTX 2080 Ti — OK -
RTX 50-series — fails with the libuv rendezvous error
