I have met a similar problem in my code when I’m running my main file, here below is the error window rised:
File "D:\Code\Pconv\utils.py", line 72, in clip_gradient
param.grad.data.clamp_(-grad_clip, grad_clip)
AttributeError: 'NoneType' object has no attribute 'data'
That’s from a function I have defined where is:
def clip_gradient(optimizer, grad_clip):
for group in optimizer.param_groups:
for param in group['params']:
param.grad.data.clamp_(-grad_clip, grad_clip)
print (param.grad)
Here is the network(model) I used from [1]:
def sigmoid(x):
return 1 / (1 + math.exp(-x))
def norm_angle(angle):
norm_angle = sigmoid(10 * (abs(angle) / 0.7853975 - 1))
return norm_angle
def conv3x3(in_planes, out_planes, stride=1):
"3x3 convolution with padding"
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU()
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU()
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out = out + residual
out = self.relu(out)
return out
###''' self-attention; relation-attention '''
class ResNet_AT(nn.Module):
def __init__(self, block, layers, num_classes=7, end2end=True, at_type='self-attention'):
self.inplanes = 64
self.end2end = end2end
super(ResNet_AT, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU()
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AdaptiveAvgPool2d(1)
self.dropout = nn.Dropout(0.5)
self.dropout2 = nn.Dropout(0.6)
self.alpha = nn.Sequential(nn.Linear(512, 1),
nn.Sigmoid())
self.beta = nn.Sequential(nn.Linear(1024, 1),
nn.Sigmoid())
self.pred_fc1 = nn.Linear(512, 7)
self.pred_fc2 = nn.Linear(1024, 7)
self.at_type = at_type
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x='', phrase='train', AT_level='first_level',vectors='',vm='',alphas_from1='',index_matrix=''):
global pred_score
vs = []
alphas = []
assert phrase == 'train' or phrase == 'eval'
assert AT_level == 'first_level' or AT_level == 'second_level' or AT_level == 'pred'
if phrase == 'train':
f = x[:, :, :, :]
f = self.conv1(f)
f = self.bn1(f)
f = self.relu(f)
f = self.maxpool(f)
f = self.layer1(f)
f = self.layer2(f)
f = self.layer3(f)
f = self.layer4(f)
f = self.avgpool(f)
f = f.squeeze(3).squeeze(2) # f[1, 512, 1, 1] ---> f[1, 512]
# MN_MODEL(first Level)
vs.append(f)
alphas.append(self.alpha(self.dropout(f)))
vs_stack = torch.stack(vs, dim=2)
alphas_stack = torch.stack(alphas, dim=2)
if self.at_type == 'self-attention':
vm1 = vs_stack.mul(alphas_stack).sum(2).div(alphas_stack.sum(2))
if self.at_type == 'self_relation-attention':
vm1 = vs_stack.mul(alphas_stack).sum(2).div(alphas_stack.sum(2))
betas = []
for i in range(len(vs)):
vs[i] = torch.cat([vs[i], vm1], dim=1)
betas.append(self.beta(self.dropout(vs[i])))
cascadeVs_stack = torch.stack(vs, dim=2)
betas_stack = torch.stack(betas, dim=2)
output = cascadeVs_stack.mul(betas_stack * alphas_stack).sum(2).div((betas_stack * alphas_stack).sum(2))
if self.at_type == 'self-attention':
vm1 = self.dropout(vm1)
pred_score = self.pred_fc1(vm1)
if self.at_type == 'self_relation-attention':
output = self.dropout2(output)
pred_score = self.pred_fc2(output)
return pred_score
if phrase == 'eval':
if AT_level == 'first_level':
f = self.conv1(x)
f = self.bn1(f)
f = self.relu(f)
f = self.maxpool(f)
f = self.layer1(f)
f = self.layer2(f)
f = self.layer3(f)
f = self.layer4(f)
f = self.avgpool(f)
f = f.squeeze(3).squeeze(2) # f[1, 512, 1, 1] ---> f[1, 512]
# MN_MODEL(first Level)
alphas = self.alpha(self.dropout(f))
return f, alphas
if AT_level == 'second_level':
assert self.at_type == 'self_relation-attention'
vms = index_matrix.permute(1, 0).mm(vm) # [381, 21783] -> [21783,381] * [381,512] --> [21783, 512]
vs_cate = torch.cat([vectors, vms], dim=1)
betas = self.beta(self.dropout(vs_cate))
''' keywords: mean_fc ; weight_sourcefc; sum_alpha; weightmean_sourcefc '''
''' alpha * beta '''
weight_catefc = vs_cate.mul(alphas_from1) # [21570,512] * [21570,1] --->[21570,512]
alpha_beta = alphas_from1.mul(betas)
sum_alphabetas = index_matrix.mm(alpha_beta) # [380,21570] * [21570,1] -> [380,1]
weightmean_catefc = index_matrix.mm(weight_catefc).div(sum_alphabetas)
weightmean_catefc = self.dropout2(weightmean_catefc)
pred_score = self.pred_fc2(weightmean_catefc)
return pred_score
if AT_level == 'pred':
if self.at_type == 'self-attention':
pred_score = self.pred_fc1(self.dropout(vm))
return pred_score
''' self-attention; relation-attention '''
def resnet18_FAN(pretrained=False, **kwargs):
# Constructs base a ResNet-18 model.
model = ResNet_AT(BasicBlock, [2, 2, 2, 2], **kwargs)
return model
I think it should be some layers in my network is not used, but I cannot figure out which layers they are, any helps are very appreciated!
[1] The original paper named “FRAME ATTENTION NETWORKS FOR FACIAL EXPRESSION RECOGNITION IN VIDEOS”, here is the link: https://arxiv.org/pdf/1907.00193.pdf.