### Update, the problem is solved.

if you encounter with the same issue, try using .contiguous() as following example from @ptrblck

Hi all,

I did slight change on a nn by adding a max_pool1d and get error traceback

```
Traceback (most recent call last):
File "../../learn/training.py", line 212, in train
loss.backward()
File "C:\Users\Veid\Anaconda3\envs\caml\lib\site-packages\torch\tensor.py", line 195, in backward
torch.autograd.backward(self, gradient, retain_graph, create_graph)
File "C:\Users\Veid\Anaconda3\envs\caml\lib\site-packages\torch\autograd\__init__.py", line 99, in backward
allow_unreachable=True) # allow_unreachable flag
RuntimeError: fractional_max_pool2d_backward_out_cuda failed with error code 0
```

How can I correct this right?

I’m new with torch so I apologize in advance if this is a stupid question.

The original code snippet that works successfully

```
#x shape is torch.Size([8, k, 400]) where k is an unfixed number
#U.weight shape is torch.Size([50, 400])
alpha = F.softmax(self.U.weight.matmul(x.transpose(1,2)), dim=2)
#alpha shape is torch.Size([8, 50, k])
m = alpha.matmul(x)
#m shape is torch.Size([8, 50, 400])
#final.weight shape is torch.Size([50, 400])
y = self.final.weight.mul(m).sum(dim=2).add(self.final.bias)
#y shape is torch.Size([8, 50])
```

The code snippet after changing that fails to autograd

```
#x shape is torch.Size([8, k, 400]) where k is an unfixed number, 8 is the batch size
#U.weight shape is torch.Size([50, 400])
x= F.max_pool1d(x.transpose(1,2), kernel_size=x.size()[1])
#after max pooling, x shape is torch.Size([8, 400, 1])
alpha = self.U.weight.mul(x.transpose(1,2))
#alpha shape is torch.Size([8, 50, 400])
#final.weight shape is torch.Size([50, 400])
y = self.final.weight.mul(alpha).sum(dim=2).add(self.final.bias)
#y shape is torch.Size([8, 50])
```

Here is the runable code that I extracted related Variable defination and loss computation part. But the bug can not be reproduced in this

setting.

```
import torch.nn as nn
import torch
import torch.nn.functional as F
from torch.nn.init import xavier_uniform_
from torch.autograd import Variable
target=Variable(torch.randn(8,50))
U = nn.Linear(400, 50)
xavier_uniform_(U.weight)
final = nn.Linear(400, 50)
xavier_uniform_(final.weight)
x = Variable(torch.randn(8,123,400))
'''
#The code snippet that works successfully
alpha = F.softmax(U.weight.matmul(x.transpose(1,2)), dim=2)
m = alpha.matmul(x)
y = final.weight.mul(m).sum(dim=2).add(final.bias)
'''
'''
#The code snippet that fails to autograd
x= F.max_pool1d(x.transpose(1,2), kernel_size=x.size()[1])
alpha = U.weight.mul(x.transpose(1,2))
y = final.weight.mul(alpha).sum(dim=2).add(final.bias)
'''
yhat= y
loss = F.binary_cross_entropy_with_logits(yhat, target)
loss.backward()
print(y.size())
```