How to convert an OpenCV image into libtorch Tensor?

How should I be converting between OpenCVs Mat into libtorch Tensor? so that I can feed it to my modules ?
The modules are converted from Pytorch(python) so I’m not sure if they should be in torch::Tensor or torch::jit::IValue !
So any help is greatly appreciated

OK here is a simple sample that implements differents ops in libtorch, I wrote this as I was playing with different things , I guess this might come in handy to lots of new commers :
The following simple demo shows how to :

  1. Convert an opencv image into a Tensor
  2. How to convert a Tensor into IValue which is used to feed the networks
  3. How to Convert back from an existing tensor back to an OpenCV image
  4. How to do simple or complex preprocessings on the input image/tensor
  5. show basic stuff like how to transpose and or add batch dim to the tensor
  6. How to see the shape of the tensor and slice of it
    7 and How to define a Module (load a pretrained model) and feed forward it and get its output!

std::string get_image_type(const cv::Mat& img, bool more_info=true) 
{
    std::string r;
    int type = img.type();
    uchar depth = type & CV_MAT_DEPTH_MASK;
    uchar chans = 1 + (type >> CV_CN_SHIFT);

    switch (depth) {
    case CV_8U:  r = "8U"; break;
    case CV_8S:  r = "8S"; break;
    case CV_16U: r = "16U"; break;
    case CV_16S: r = "16S"; break;
    case CV_32S: r = "32S"; break;
    case CV_32F: r = "32F"; break;
    case CV_64F: r = "64F"; break;
    default:     r = "User"; break;
    }

    r += "C";
    r += (chans + '0');
   
    if (more_info)
        std::cout << "depth: " << img.depth() << " channels: " << img.channels() << std::endl;

    return r;
}

void show_image(cv::Mat& img, std::string title)
{
    std::string image_type = get_image_type(img);
    cv::namedWindow(title + " type:" + image_type, cv::WINDOW_NORMAL); // Create a window for display.
    cv::imshow(title, img);
    cv::waitKey(0);
}

auto transpose(at::Tensor tensor, c10::IntArrayRef dims = { 0, 3, 1, 2 })
{
    std::cout << "############### transpose ############" << std::endl;
    std::cout << "shape before : " << tensor.sizes() << std::endl;
    tensor = tensor.permute(dims);
    std::cout << "shape after : " << tensor.sizes() << std::endl;
    std::cout << "######################################" << std::endl;
    return tensor;
}

auto ToTensor(cv::Mat img, bool show_output = false, bool unsqueeze=false, int unsqueeze_dim = 0)
{
    std::cout << "image shape: " << img.size() << std::endl;
    at::Tensor tensor_image = torch::from_blob(img.data, { img.rows, img.cols, 3 }, at::kByte);

    if (unsqueeze)
    {
        tensor_image.unsqueeze_(unsqueeze_dim);
        std::cout << "tensors new shape: " << tensor_image.sizes() << std::endl;
    }
    
    if (show_output)
    {
        std::cout << tensor_image.slice(2, 0, 1) << std::endl;
    }
    std::cout << "tenor shape: " << tensor_image.sizes() << std::endl;
    return tensor_image;
}

auto ToInput(at::Tensor tensor_image)
{
    // Create a vector of inputs.
    return std::vector<torch::jit::IValue>{tensor_image};
}

auto ToCvImage(at::Tensor tensor)
{
    int width = tensor.sizes()[0];
    int height = tensor.sizes()[1];
    try
    {
        cv::Mat output_mat(cv::Size{ height, width }, CV_8UC3, tensor.data_ptr<uchar>());
        
        show_image(output_mat, "converted image from tensor");
        return output_mat.clone();
    }
    catch (const c10::Error& e)
    {
        std::cout << "an error has occured : " << e.msg() << std::endl;
    }
    return cv::Mat(height, width, CV_8UC3);
}

int main(int argc, const char* argv[]) 
{
    std::string msg = "sample image";
    auto currentPath = "cpp\\port\\LibtorchPort\\imgs\\img1.jpg";
    auto img = cv::imread(currentPath);
    show_image(img, msg);

    // convert the cvimage into tensor
    auto tensor = ToTensor(img);

    // preprocess the image. meaning alter it in a way a bit!
    tensor = tensor.clamp_max(c10::Scalar(50));

    auto cv_img = ToCvImage(tensor);
    show_image(cv_img, "converted image from tensor");
    // convert the tensor into float and scale it 
    tensor = tensor.toType(c10::kFloat).div(255);
    // swap axis 
    tensor = transpose(tensor, { (2),(0),(1) });
    //add batch dim (an inplace operation just like in pytorch)
    tensor.unsqueeze_(0);

    auto input_to_net = ToInput(tensor);
   

    torch::jit::script::Module r18;

    try 
    {
        std::string r18_model_path = "D:\\Codes\\python\\Model_Zoo\\jitcache\\resnet18.pt";


        // Deserialize the ScriptModule from a file using torch::jit::load().
        r18 = torch::jit::load(r18_model_path);
    
        // Execute the model and turn its output into a tensor.
        at::Tensor output = r18.forward(input_to_net).toTensor();

        //sizes() gives shape. 
        std::cout << output.sizes() << std::endl;
        std::cout << "output: " << output[0] << std::endl;
        //std::cout << output.slice(/*dim=*/1, /*start=*/0, /*end=*/5) << '\n';
    
    }
    catch (const c10::Error& e) 
    {
        std::cerr << "error loading the model\n" <<e.msg();
        return -1;
    }

    std::cout << "ok\n";
    std::system("pause");
    return 0;
}

All of the info here are nearly learnt from this issue and this one
Its a shame that a single issue has way much more information about libtorch than the entirity of the official documentation for libtorch/cpp!
This is not fair to CPP!