Hello I am a beginner and I am using pytorch to implement LSTM model for classification. when running the model the loss values keep changing (Increase and decrease randomly). shown by the following graph. When I try to implement it by other frameworks like Keras using the same data the results are correct and the loss decreases with time.

I am using MSELoss function and following is my code for the LSTM class

```
class LSTM(nn.Module):
def __init__(self, input_dim=272, hidden_layer_size=64, output_size=1,batch=64,n_layer=1):
super().__init__()
self.hidden_layer_size = hidden_layer_size
self.lstm = nn.LSTM(input_dim, hidden_layer_size,batch_first=True)
self.linear1 = nn.Linear(hidden_layer_size, 32)
self.relu = nn.ReLU()
self.linear2 = nn.Linear(32, output_size)
self.hidden_cell = (torch.randn(n_layer,batch,self.hidden_layer_size).cuda(), torch.randn(n_layer,batch,self.hidden_layer_size).cuda())
self.sigmoid = nn.Sigmoid()
def forward(self, input_seq):
lstm_out, self.hidden_cell = self.lstm(input_seq, self.hidden_cell)
#print(lstm_out[:,-1,:].shape)
linear1_out = self.linear1(lstm_out[:,-1,:])
relu=self.relu(linear1_out)
linear2_out = self.linear2(relu)
prediction=self.sigmoid(linear2_out)
return prediction
def backward(self,g0):
raise RuntimeError("Some Error in Backward")
return g0.clone()
```