Because a nn.Parameters is not a leaf node. The other ones are constants (buffers inside a nn.Module). In fact you don’t reall need to use a nn.Module. You can optimize a tensor directly.

```
import torch
cte1 = torch.rand(5, 3).requires_grad_(False)
cte2 = torch.rand(5, 5).requires_grad_(False)
tensor = torch.ones(3, 5).requires_grad_()
optim = torch.optim.SGD([tensor], lr=1)
print(f'Initial tensor'
f'{tensor}')
for i in range(5):
optim.zero_grad()
print(f'Iteration {i}')
output = cte1 @ tensor + cte2
print(f'Requires grad? {output.requires_grad}')
output.sum().backward()
print(f'Tensor gradients \n'
f' {tensor.grad}')
optim.step()
print(f'Tensors \n'
f' {tensor}')
```

```
Initial tensortensor([[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.]], requires_grad=True)
Iteration 0
Requires grad? True
Tensor gradients
tensor([[1.4718, 1.4718, 1.4718, 1.4718, 1.4718],
[1.7690, 1.7690, 1.7690, 1.7690, 1.7690],
[2.1010, 2.1010, 2.1010, 2.1010, 2.1010]])
Tensors
tensor([[-0.4718, -0.4718, -0.4718, -0.4718, -0.4718],
[-0.7690, -0.7690, -0.7690, -0.7690, -0.7690],
[-1.1010, -1.1010, -1.1010, -1.1010, -1.1010]], requires_grad=True)
Iteration 1
Requires grad? True
Tensor gradients
tensor([[1.4718, 1.4718, 1.4718, 1.4718, 1.4718],
[1.7690, 1.7690, 1.7690, 1.7690, 1.7690],
[2.1010, 2.1010, 2.1010, 2.1010, 2.1010]])
Tensors
tensor([[-1.9435, -1.9435, -1.9435, -1.9435, -1.9435],
[-2.5379, -2.5379, -2.5379, -2.5379, -2.5379],
[-3.2019, -3.2019, -3.2019, -3.2019, -3.2019]], requires_grad=True)
Iteration 2
Requires grad? True
Tensor gradients
tensor([[1.4718, 1.4718, 1.4718, 1.4718, 1.4718],
[1.7690, 1.7690, 1.7690, 1.7690, 1.7690],
[2.1010, 2.1010, 2.1010, 2.1010, 2.1010]])
Tensors
tensor([[-3.4153, -3.4153, -3.4153, -3.4153, -3.4153],
[-4.3069, -4.3069, -4.3069, -4.3069, -4.3069],
[-5.3029, -5.3029, -5.3029, -5.3029, -5.3029]], requires_grad=True)
Iteration 3
Requires grad? True
Tensor gradients
tensor([[1.4718, 1.4718, 1.4718, 1.4718, 1.4718],
[1.7690, 1.7690, 1.7690, 1.7690, 1.7690],
[2.1010, 2.1010, 2.1010, 2.1010, 2.1010]])
Tensors
tensor([[-4.8871, -4.8871, -4.8871, -4.8871, -4.8871],
[-6.0759, -6.0759, -6.0759, -6.0759, -6.0759],
[-7.4039, -7.4039, -7.4039, -7.4039, -7.4039]], requires_grad=True)
Iteration 4
Requires grad? True
Tensor gradients
tensor([[1.4718, 1.4718, 1.4718, 1.4718, 1.4718],
[1.7690, 1.7690, 1.7690, 1.7690, 1.7690],
[2.1010, 2.1010, 2.1010, 2.1010, 2.1010]])
Tensors
tensor([[-6.3588, -6.3588, -6.3588, -6.3588, -6.3588],
[-7.8448, -7.8448, -7.8448, -7.8448, -7.8448],
[-9.5048, -9.5048, -9.5048, -9.5048, -9.5048]], requires_grad=True)
Process finished with exit code 0
```